Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98681
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor羅弘岳zh_TW
dc.contributor.advisorHong-Yueh Loen
dc.contributor.author鄭博永zh_TW
dc.contributor.authorBo-Yung Jengen
dc.date.accessioned2025-08-18T01:19:58Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citationAndersen, T. L., Clavero, M., Frigaard, P., Losada, M., and Puyol, J. (2016). A new active absorption system and its performance to linear and non-linear waves. Coastal Engineering, 114, 47–60.
Bullock, G. N. and Murton, G. J. (1989). Performance of a wedge-type absorbing wave maker. Journal of Waterway, Port, Coastal, and Ocean Engineering, 115(1), 1–17.
Chatry, G., Clément, A., and Gouraud, T. (1998). Self-adaptive control of a piston wave absorber. In ISOPE International Ocean and Polar Engineering Conference, pages ISOPE–I. ISOPE.
Christensen, M. and Frigaard, P. (1994). Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark. In Proceedings of the International Symposium: Waves–Physical and Numerical Modelling: University of British Columbia, Vancouver, Canada, August 21-24, 1994, volume 1, page 100. Department of Civil Engineering, University of British Columbia.
De Mello, P., Carneiro, M., Tannuri, E. A., Kassab Jr, F., Marques, R. P., Adamowski, J. C., and Nishimoto, K. (2013). A control and automation system for wave basins. Mechatronics, 23(1), 94–107.
Dean, R. G. and Dalrymple, R. A. (1991). Water Wave Mechanics for Engineers and Scientists, volume 2. world scientific publishing company.
Francis, V., Ramakrishnan, B., Rudman, M., and Valizadeh, A. (2020). Generating stable solitary waves with a piston-type wavemaker. Coastal Engineering, 157, 103633.
Goda, Y. and Suzuki, Y. (1976). Estimation of incident and reflected waves in random wave experiments. In Coastal Engineering 1976, pages 828–845.
Goring, D. and Raichlen, F. (1980). The generation of long waves in the laboratory. In Coastal Engineering 1980, pages 763–783.
Grimshaw, R. (1970). The solitary wave in water of variable depth. Journal of Fluid Mechanics, 42(3), 639–656.
Higuera, P., Losada, I. J., and Lara, J. L. (2015). Three-dimensional numerical wave generation with moving boundaries. Coastal Engineering, 101, 35–47.
Hughes, S. A. (1991). Physical Models and Laboratory Techniques in Coastal Engineering. World Scientific, Singapore.
Hughes, S. A. (1993). Physical models and laboratory techniques in coastal engineering, volume 7. World Scientific.
Le Méhauté, B. (1976). An introduction to hydrodynamics and water waves. Springer Science & Business Media.
Lin, C.-Y. and Huang, C.-J. (2004). Decomposition of incident and reflected higher harmonic waves using four wave gauges. Coastal Engineering, 51(5-6), 395–406.
Liu, P. L.-F., Park, Y. S., and Cowen, E. A. (2007). Boundary layer flow and bed shear stress under a solitary wave. Journal of Fluid Mechanics, 574, 449–463.
Madsen, O.S.(1971). On the generation of long waves. Journal of Geophysical Research, 76(36), 8672–8683.
Malek-Mohammadi, S. and Testik, F. Y. (2010). New methodology for laboratory generation of solitary waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 136(5), 286–294.
Mansard, E. P. and Funke, E. (1980). The measurement of incident and reflected spectra using a least squares method. In Coastal Engineering 1980, pages 154–172.
Milgram, J. H. (1970). Active water-wave absorbers. Journal of Fluid Mechanics, 42(4), 845–859.
Salter, S. (1984). Physical modelling of directional seas. In Proc. Symp. on Description and Modelling of Directional Seas, Copenhagen, pages 81–89.
Salter, S. H. (1981). Absorbing wave-makers and wide tanks. In Physical Modelling in Coastal Engineering, pages 185–202. Routledge.
Schäffer, H.A.andJakobsen,K.(2003). Non-linear wave generation and active absorption in wave flumes. In Long Waves Symposium, Thessaloniki, Greece.
Schäffer, H. A. and Klopman, G. (2000). Review of multidirectional active wave absorption methods. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126(2), 88–97.
Spinneken, J.andSwan,C.(2009). Wave generation and absorption using force-controlled wave machines. In ISOPE International Ocean and Polar Engineering Conference, pages ISOPE–I. ISOPE.
Stokes, G. G. (1847). On the theory of oscillatory waves. Trans. Cam. Philos. Soc., 8, 441–455.
Svendsen, J. (1985). Physical modelling of water waves. In Dalrymple, R. A., editor, Physical Modelling in Coastal Engineering, pages 13–47. A. A. Balkema, Rotterdam, The Netherlands. doi:10.1201/9780203743379.
Zhao, K. and Liu, P. L.-F. (2022). On Stokes wave solutions. Proceedings of the Royal Society A, 478(2258), 20210732.
Zhao, K., Wang, Y., and Liu, P. L.-F. (2024). A guide for selecting periodic water wave theories–Le Méhauté (1976)’s graph revisited. Coastal Engineering, 188, 104432.
林立剛(2021). N型波傳遞之數值模擬與實驗驗證. 國立臺灣大學工程科學及海洋工程學系學位論文,pages1–78.
楊婉青(2023). 以實驗方法研究孤立波於黏性泥床上過垂直圓柱. 國立臺灣大學工程科學及海洋工程學系學位論文,pages1–99.
邱信瀚(2024). 以水槽實驗探討潛沒式穿孔消波裝置之消波效率. 國立臺灣大學工程科學及海洋工程學系學位論文,pages1–128.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98681-
dc.description.abstract實驗水槽受限於空間尺度,在造波板製造波浪後,會因為各種因素導致反射波在水槽內部不斷形成,持續干擾水槽波況,致使實際波形與預期目標產生偏差。被動式消波雖有製作成本低、材料容易取得等好處,但其三大缺點包含:在固定外形下,僅能針對特定波況消波、占據水槽體積較大、只能配置於水槽末端,因此各大研究單位與企業開始投入主動式消波的開發。主動式消波最大特點是可以直接整合於造波機結構上,使得消波控制不再侷限於水槽末端。其操作流程可概括為三個主要步驟:首先,透過感測元件即時量測並擷取反射波訊號;其次,藉由運算單元計算對應之消波軌跡;最後,將修正後之造波指令即時回授至造波系統,以同步達成造波與主動消波。對於需長時間維持穩定目標波況之水槽實驗而言,即時閉迴路主動消波系統被視為不可或缺,因此,附加主動消波功能的造波機逐漸成為實驗水槽中必要設備。本研究致力於實驗室二維平推式斷面水槽中,加裝主動消波系統的可行性評估、設計與實作。在實驗初期,本文於小型造波水槽,初步驗證主動消波之方法,為主動消波概念奠定基礎。其後,實際對大、小型造波水槽之原有設備加裝主動消波系統進行分析。最終,本文在實驗室大型造波水槽中,使用新型運動控制器,並自行研發出一套完全閉迴路的主動消波系統,成功以疊加消除法消除週期波與孤立波。經本文實測,使用分離式消除週期反射波,消波率至少可以達75%,此外,更可以近乎完全的消除孤立波之反射波。而整合式主動消波可以消除絕大部分造波端的再反射波,足以證明此主動消波的回授控制系統成效顯著。zh_TW
dc.description.abstractDue to the spatial constraints of experimental wave flumes, waves generated by the wave paddle often result in reflected waves that continuously form within the flume, persistently interfering with the wave field and causing deviations between the actual and the target wave profiles. While passive wave absorption offers advantages such as low construction cost and easy material availability, it has three main disadvantages: it can only absorb specific wave conditions under a fixed shape, it occupies a large volume of the flume, and it can only be installed at the flume end. As a result, many research institutes and industrial sectors have begun investing in the development of active wave absorption. The greatest feature of active wave absorption is its ability to be directly integrated into the wave maker system, allowing wave absorption control to no longer be confined to the end of the flume. The operational process can be broadly divided into three main steps: first, real-time measurement and extraction of reflected wave signals using sensing elements; second, calculation of the corresponding absorption trajectory by the control unit; and finally, immediate feedback of the corrected wave generation commands to the wave maker system to achieve simultaneous wave generation and active absorption. For flume experiments that require long-term maintenance of stable target wave conditions, real-time closed-loop active wave absorption systems are considered indispensable. Consequently, wave makers equipped with active absorption functions have gradually become essential equipment in experimental wave flumes. This study focuses on the feasibility assessment, design, and implementation of an active wave absorption system integrated into a laboratory two-dimensional piston-type wave flume. In the initial stage, a small-scale flume was used to preliminarily verify the concept of active wave absorption, thus laying the foundation for subsequent development. Following this, analyses were conducted to integrate the active wave absorption system into both small-scale and large-scale flumes. Ultimately, in a large-scale wave flume, a novel motion controller was employed, and a fully closed-loop active wave absorption system was self-developed. Using the superposition principle, both periodic and solitary reflected waves were successfully eliminated. Based on the experimental results, separate active wave absorption can achieve an absorption rate of at least 75% for periodic reflected waves. Moreover, it can almost completely eliminate reflected waves generated by solitary waves. On the other hand, integrated active wave absorption effectively suppresses most of the re-reflected waves from the wave generation boundary, clearly demonstrating the high performance of this feedback control system for active wave absorption.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:19:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:19:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝誌 iii
摘要 v
Abstract vii
目次 ix
圖次 xiii
表次 xvii
符號列表 xix
第一章緒論 1
1.1研究背景 1
1.2主動消波文獻回顧 3
1.2.1主動消波原理 4
1.2.2波高感測器種類 4
1.2.3反射波提取技術 5
1.3市售主動消波產品簡介 6
1.4研究動機與目標 9
1.5研究架構 10
第二章波浪理論 11
2.1孤立波 11
2.1.1理論與解析解 12
2.1.2平推式造波理論 14
2.1.2.1波數種類 14
2.1.2.2造波軌跡 15
2.2週期波 17
2.2.1波況與種類 17
2.2.2 Stokeswave理論 20
2.2.3線性造波理論 22
2.2.4平推式二階造波理論 25
第三章實驗設備與可行性分析 27
3.1小型造波水槽 27
3.1.1造波與消波機構 28
3.1.2運動控制設備 30
3.1.3超音波感測器 31
3.1.3.1資料擷取 33
3.1.3.2量測與校正 34
3.1.3.3資料處理 35
3.1.4孤立波造波結果分析與歸納 37
3.1.5小水槽新設備驗證 40
3.1.6主動消波原理測試 42
3.1.6.1測試流程 42
3.1.6.2時間反轉法 42
3.1.6.3疊加消除法 45
3.1.6.4本節小結 47
3.2大型造波水槽 48
3.2.1造波機構 49
3.2.2運動控制設備 53
3.2.3超音波感測與資料擷取器 54
3.2.4回授控制系統 55
3.2.5原設備試驗 56
3.2.6新設備分析 59
3.2.6.1閉迴路控制 59
3.2.6.2比例積分微分控制器 60
3.2.6.3新設備選擇 61
3.2.7大水槽新設備驗證 64
第四章實作成果與討論 67
4.1新運動控制器與主動消波流程 67
4.2分離式主動消波 69
4.2.1虛擬軸 71
4.2.1.1疊加消除法驗證 71
4.2.1.2可調式時間序列 72
4.2.2實體軸 73
4.2.2.1孤立波 74
4.2.2.2週期波 77
4.3整合式主動消波 78
第五章結論與未來展望 81
5.1結論 81
5.2未來展望 83
參考文獻 85
-
dc.language.isozh_TW-
dc.subject回授控制zh_TW
dc.subject分離式主動消波zh_TW
dc.subject整合式主動消波zh_TW
dc.subject二維斷面水槽zh_TW
dc.subject閉迴路系統設計zh_TW
dc.subjectFeedback controlen
dc.subject2D wave flumeen
dc.subjectIntegrated active wave absorptionen
dc.subjectSeparate active wave absorptionen
dc.subjectClosed-loop system designen
dc.title二維斷面水槽中主動消波控制系統的設計與實作zh_TW
dc.titleDesign and Implementation of an Active Wave Absorption Control System in a 2D Wave Flumeen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林宗岳;江茂雄;吳昀達zh_TW
dc.contributor.oralexamcommitteeTsung-Yueh Lin;Mao-Hsiung Chiang;Yun-Ta Wuen
dc.subject.keyword分離式主動消波,整合式主動消波,二維斷面水槽,閉迴路系統設計,回授控制,zh_TW
dc.subject.keywordSeparate active wave absorption,Integrated active wave absorption,2D wave flume,Closed-loop system design,Feedback control,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202502870-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2025-08-18-
Appears in Collections:工程科學及海洋工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf31.71 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved