Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98673
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張立zh_TW
dc.contributor.advisorLi Changen
dc.contributor.author施沛岑zh_TW
dc.contributor.authorPei-Cen Shihen
dc.date.accessioned2025-08-18T01:18:12Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citation李宜霞。2006。木瓜輪點病毒之 Real-Time RT-PCR 定量偵測技術之研發與應用。國立臺灣大學植物病理與微生物學研究所學位論文。
Abrahamian, P., Hammond, R. W., and Hammond, J. 2020. Plant virus–derived vectors: applications in agricultural and medical biotechnology. Annual Review of Virology 7:513–535.
Achs, A., Glasa, M., and Šubr, Z. 2022. Plum pox virus genome-based vector enables the expression of different heterologous polypeptides in Nicotiana benthamiana plants. Processes 10:1526.
Achs, A., Glasa, M., and Šubr, Z. 2024. Potyvirus-based vectors for heterologous gene Expression in Plants. Viruses 16:1920.
Aguilar, E., Almendral, D., Allende, L., Pacheco, R., Chung, B. N., Canto, T., and Tenllado, F. 2015. The P25 protein of Potato virus X (PVX) is the main pathogenicity determinant responsible for systemic necrosis in PVX-associated synergisms. Journal of Virology 89:2090–2103.
Ala-Poikela, M., Rajamäki, M.-L., and Valkonen, J. P. 2019. A novel interaction network used by potyviruses in virus–host interactions at the protein level. Viruses 11:1158.
Avesani, L., Marconi, G., Morandini, F., Albertini, E., Bruschetta, M., Bortesi, L., Pezzotti, M., and Porceddu, A. 2007. Stability of Potato virus X expression vectors is related to insert size: implications for replication models and risk assessment. Transgenic Research 16:587–597.
Beauchemin, C., Bougie, V., and Laliberté, J.-F. 2005. Simultaneous production of two foreign proteins from a potyvirus-based vector. Virus Research 112:1–8.
Bedoya, L. C., and Daròs, J.-A. 2010. Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research 149:234–240.
Beernink, B. M., Lappe, R. R., Bredow, M., and Whitham, S. A. 2022. Impacts of RNA mobility signals on virus induced somatic and germline gene editing. Frontiers in Genome Editing 4:925088.
Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366.
Blanchard, A., Rolland, M., Lacroix, C., Kerlan, C., and Jacquot, E. 2008. Potato virus Y: a century of evolution. Virology 7:21–32.
Bowmiya, K., Arul, L., Sathiyamurthy, V., Djanaguiraman, M., and Kumar, K. 2024. Viruses unleashed: Revolutionary approaches to gene transfer in plants. Plant Science Today 11:1-11.
Bradshaw, J. E. 2022. A brief history of the impact of potato genetics on the breeding of tetraploid potato cultivars for tuber propagation. Potato Research 65:461–501.
Burgyán, J., and Havelda, Z. 2011. Viral suppressors of RNA silencing. Trends in Plant Science 16:265–272.
Cassells, A. C., and Herrick, C. C. 1977. Cross protection between mild and severe strains of tobacco mosaic virus in doubly inoculated tomato plants. Virology 78:253–260.
Chai, M., Wu, X., Liu, J., Fang, Y., Luan, Y., Cui, X., Zhou, X., Wang, A., and Cheng, X. 2020. P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. Journal of Virology 94:10.1128/jvi. 01898–01819.
Chang, L., Tzean, Y., Hsin, K. T., Lin, C. Y., Wang, C. N., and Yeh, H. H. 2022. Stress associated proteins coordinate the activation of comprehensive antiviral immunity in Phalaenopsis orchids. New Phytologist 233.1: 145-155.
Chapman, S., Kavanagh, T., and Baulcombe, D. 1992. Potato virus X as a vector for gene expression in plants. The Plant Journal 2:549–557.
Chen, C.-C., Chen, T.-C., Raja, J. A., Chang, C.-A., Chen, L.-W., Lin, S.-S., and Yeh, S.-D. 2007. Effectiveness and stability of heterologous proteins expressed in plants by Turnip mosaic virus vector at five different insertion sites. Virus Research 130:210–227.
Chen, Z. J. 2010. Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science 15:57–71.
Chiang, C.-H., Lee, C.-Y., Wang, C.-H., Jan, F.-J., Lin, S.-S., Chen, T.-C., Raja, J. A., and Yeh, S.-D. 2007. Genetic analysis of an attenuated Papaya ringspot virus strain applied for cross-protection. European Journal of Plant Pathology 118:333–348.
Chikh Ali, M., Maoka, T., Natsuaki, T., and Natsuaki, K. 2010. PVYNTN‐NW, a novel recombinant strain of Potato virus Y predominating in potato fields in Syria. Plant Pathology 59:31–41.
Choi, I. R., Stenger, D. C., Morris, T. J., and French, R. 2000. A plant virus vector for systemic expression of foreign genes in cereals. The Plant Journal 23:547–555.
Coutts, B., and Jones, R. 2015. Potato virus Y: Contact transmission, stability, inactivation, and infection sources. Plant Disease 99:387–394.
Cui, H., and Wang, A. 2017. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene. Plant Biotechnology Journal 15:344–356.
da Silva, W., Kutnjak, D., Xu, Y., Xu, Y., Giovannoni, J., Elena, S. F., and Gray, S. 2020. Transmission modes affect the population structure of potato virus Y in potato. PLoS Pathogens 16:e1008608.
Dawson, W. O., Beck, D. L., Knorr, D. A., and Grantham, G. L. 1986. cDNA cloning of the complete genome of tobacco mosaic virus and production of infectious transcripts. Proceedings of the National Academy of Sciences of the United States of America 83:1832–1836.
Del Toro, F., Fernández, F. T., Tilsner, J., Wright, K. M., Tenllado, F., Chung, B. N., Praveen, S., and Canto, T. 2014. Potato virus Y HCPro localization at distinct, dynamically related and environment-influenced structures in the cell cytoplasm. Molecular Plant-Microbe Interactions 27:1331–1343.
Deng, X., Kelloniemi, J., Haikonen, T., Vuorinen, A. L., Elomaa, P., Teeri, T. H., and Valkonen, J. P. 2013. Modification of Tobacco rattle virus RNA1 to serve as a VIGS vector reveals that the 29K movement protein is an RNA silencing suppressor of the virus. Molecular Plant-Microbe Interactions 26:503–514.
Dickmeis, C., Fischer, R., and Commandeur, U. 2014. Potato virus X‐based expression vectors are stabilized for long‐term production of proteins and larger inserts. Biotechnology Journal 9:1369–1379.
Do, D.-H., Ngo, X.-T., and Yeh, S.-D. 2024. The generation of attenuated mutants of East Asian Passiflora virus via deletion and mutation in the N-terminal region of the HC-Pro gene for control through cross-protection. Viruses 16:1231.
Dommes, A. B., Gross, T., Herbert, D. B., Kivivirta, K. I., and Becker, A. 2019. Virus-induced gene silencing: empowering genetics in non-model organisms. Journal of Experimental Botany 70:757–770.
Du, J., Tian, Z., Liu, J., Vleeshouwers, V. G., Shi, X., and Xie, C. 2013. Functional analysis of potato genes involved in quantitative resistance to Phytophthora infestans. Molecular biology reports 40:957–967.
Ekengren, S. K., Liu, Y., Schiff, M., Dinesh‐Kumar, S., and Martin, G. B. 2003. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto‐mediated disease resistance in tomato. The Plant Journal 36:905–917.
Ellis, P., Stace-Smith, R., and De Villiers, G. 1997. Identification and geographic distribution of serotypes of potato virus Y. Plant Disease 81:481–484.
Faivre-Rampant, O., Gilroy, E. M., Hrubikova, K., Hein, I., Millam, S., Loake, G. J., Birch, P., Taylor, M., and Lacomme, C. 2004. Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiology 134:1308–1316.
Fang, M., Yu, J., Kwak, H.-R., and Kim, K.-H. 2022. Identification of viral genes involved in pepper mottle virus replication and symptom development in Nicotiana benthamiana. Frontiers in Plant Science 13:1048074.
Gao, M., and Lozano-Durán, R. 2025. Symptom development in plant viral diseases: What, how, and why? Annual Review of Phytopathology 63:1-25.
German-Retana, S., Candresse, T., Alias, E., Delbos, R.-P., and Le Gall, O. 2000. Effects of green fluorescent protein or β-glucuronidase tagging on the accumulation and pathogenicity of a resistance-breaking Lettuce mosaic virus isolate in susceptible and resistant lettuce cultivars. Molecular Plant-Microbe Interactions 13:316–324.
Gibbs, A. J., Hajizadeh, M., Ohshima, K., and Jones, R. A. 2020. The potyviruses: an evolutionary synthesis is emerging. Viruses 12:132.
Giritch, A., Marillonnet, S., Engler, C., van Eldik, G., Botterman, J., Klimyuk, V., and Gleba, Y. 2006. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proceedings of the National Academy of Sciences of the United States of America 103:14701–14706.
Glais, L., Tribodet, M., and Kerlan, C. 2005. Specific detection of the PVYN-W variant of Potato virus Y. Journal of Virological Methods 125:131–136.
Godec, T., Beier, S., Rodriguez-Granados, N. Y., Sasidharan, R., Abdelhakim, L., Teige, M., Usadel, B., Gruden, K., and Petek, M. 2025. Haplotype-resolved genome assembly of the tetraploid potato cultivar Désirée. Scientific Data 12:1044.
Goodin, M. M., Zaitlin, D., Naidu, R. A., and Lommel, S. A. 2008. Nicotiana benthamiana: its history and future as a model for plant–pathogen interactions. Molecular Plant-Microbe Interactions 21:1015–1026.
Gou, B., Dai, Z., Qin, L., Wang, Y., Liu, H., Wang, L., Liu, P., Ran, M., Fang, C., and Zhou, T. 2023. A zinc finger motif in the P1 N terminus, highly conserved in a subset of potyviruses, is associated with the host range and fitness of telosma mosaic virus. Journal of Virology 97:e01444–01422.
Gray, S., De Boer, S., Lorenzen, J., Karasev, A., Whitworth, J., Nolte, P., Singh, R., Boucher, A., and Xu, H. 2010. Potato virus Y: an evolving concern for potato crops in the United States and Canada. Plant Disease 94:1384–1397.
Hamamoto, H., Sugiyama, Y., Nakagawa, N., Hashida, E., Matsunaga, Y., Takemoto, S., Watanabe, Y., and Okada, Y. 1993. A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato. Bio/technology 11:930–932.
Hardigan, M. A., Laimbeer, F. P. E., Newton, L., Crisovan, E., Hamilton, J. P., Vaillancourt, B., Wiegert-Rininger, K., Wood, J. C., Douches, D. S., and Farré, E. M. 2017. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences of the United States of America 114:E9999–E10008.
Hasiów-Jaroszewska, B., Minicka, J., and Pospieszny, H. 2014. Cross-protection between different pathotypes of Pepino mosaic virus representing Chilean 2 genotype. Acta Scientiarum Polonorum. Hortorum Cultus 13:177–185.
Hilgarth, R. S. and T. M. Lanigan .2020. Optimization of overlap extension PCR for efficient transgene construction. MethodsX, 7: 100759.
Hoopes, G., Meng, X., Hamilton, J. P., Achakkagari, S. R., Guesdes, F. d. A. F., Bolger, M. E., Coombs, J. J., Esselink, D., Kaiser, N. R., and Kodde, L. 2022. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Molecular Plant 15:520–536.
Hu, S.-F., Wei, W.-L., Hong, S.-F., Fang, R.-Y., Wu, H.-Y., Lin, P.-C., Sanobar, N., Wang, H.-P., Sulistio, M., and Wu, C.-T. 2020. Investigation of the effects of P1 on HC-pro-mediated gene silencing suppression through genetics and omics approaches. Botanical Studies 61:22.
Ivanov, K. I., Puustinen, P., Gabrenaite, R., Vihinen, H., Rönnstrand, L., Valmu, L., Kalkkinen, N., and Mäkinen, K. 2003. Phosphorylation of the potyvirus capsid protein by protein kinase CK2 and its relevance for virus infection. The Plant Cell 15:2124–2139.
Jiang, J., Patarroyo, C., Garcia Cabanillas, D., Zheng, H., and Laliberté, J.-F. 2015. The vesicle-forming 6K2 protein of turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. Journal of Virology 89:6695–6710.
Jiang, Y., Ye, S., Wang, L., Duan, Y., Lu, W., Liu, H., Fan, D., Zhang, F., and Luo, K. 2014. Heterologous gene silencing induced by tobacco rattle virus (TRV) is efficient for pursuing functional genomics studies in woody plants. Plant Cell, Tissue and Organ Culture (PCTOC) 116:163–174.
Kang, M., Fokar, M., Abdelmageed, H., and Allen, R. D. 2011. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Molecular Biology 75:451–466.
Karasev, A. V., and Gray, S. M. 2013. Continuous and emerging challenges of Potato virus Y in potato. Annual Review of Phytopathology 51:571–586.
Kaur, A., Singh, N., Ezekiel, R., and Guraya, H. S. 2007. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chemistry 101:643–651.
Kelloniemi, J., Mäkinen, K., and Valkonen, J. P. 2008. Three heterologous proteins simultaneously expressed from a chimeric potyvirus: infectivity, stability and the correlation of genome and virion lengths. Virus Research 135:282–291.
Kogovšek, P., Pompe-Novak, M., Petek, M., Fragner, L., Weckwerth, W., and Gruden, K. 2016. Primary metabolism, phenylpropanoids and antioxidant pathways are regulated in potato as a response to Potato virus Y infection. PLoS One 11:e0146135.
Kondo, T., Kogawa, K., and Ito, K. 2015. Evaluation of cross protection by an attenuated strain of Chinese yam necrotic mosaic virus in Chinese yam. Journal of General Plant Pathology 81:42–48.
Kreuze, J. F., Souza-Dias, J., Jeevalatha, A., Figueira, A., Valkonen, J., and Jones, R. 2020. Viral diseases in potato. Pages 389–430 in: The potato crop: its agricultural, nutritional and social contribution to humankind. Springer International Publishing Cham.
Kung, Y.-J., Lin, P.-C., Yeh, S.-D., Hong, S.-F., Chua, N.-H., Liu, L.-Y., Lin, C.-P., Huang, Y.-H., Wu, H.-W., and Chen, C.-C. 2014. Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Molecular Plant-Microbe Interactions 27:944–955.
Lacomme, C., and Chapman, S. 2008. Use of Potato virus X (PVX)–based vectors for gene expression and virus‐induced gene silencing (VIGS). Current Protocols in Microbiology 8:16I. 11.11–16I. 11.13.
Lee, J.-Y., Wang, X., Cui, W., Sager, R., Modla, S., Czymmek, K., Zybaliov, B., van Wijk, K., Zhang, C., and Lu, H. 2011. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. The Plant Cell 23:3353–3373.
Li, H., Zeng, R., Chen, Z., Liu, X., Cao, Z., Xie, Q., Yang, C., and Lai, J. 2018. S-acylation of a geminivirus C4 protein is essential for regulating the CLAVATA pathway in symptom determination. Journal of Experimental Botany 69:4459–4468.
Li, L., Zhu, T., Wen, L., Zhang, T., and Ren, M. 2024. Biofortification of potato nutrition. Journal of Advanced Research.
Lin, S.-S., Wu, H.-W., Jan, F.-J., Hou, R. F., and Yeh, S.-D. 2007. Modifications of the helper component-protease of Zucchini yellow mosaic virus for generation of attenuated mutants for cross protection against severe infection. Phytopathology 97:287–296.
Lindner, K., Trautwein, F., Kellermann, A., and Bauch, G. 2015. Potato virus Y (PVY) in seed potato certification. Journal of Plant Diseases and Protection 122:109–119.
Liu, J., Wu, X., Fang, Y., Liu, Y., Bello, E. O., Li, Y., Xiong, R., Li, Y., Fu, Z. Q., and Wang, A. 2023. A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity. Nature Communications 14:3580.
Loebenstein, G. 2001. Virus and virus-like diseases of potatoes and production of seed-potatoes. Springer Science & Business Media.
Lorenzen, J.H., Piche, L.M., Gudmestad, N.C., Meacham, T. and Shiel, P. 2006. A multiplex PCR assay to characterize Potato virus Y isolates and identify strain mixtures. Plant Disease 90.7: 935–940.
M Zalat, M., Kawanna, M., and Wagih, E. 2024. Partial characterisation of three isolates of Potato virus Y. Alexandria Science Exchange Journal 45:439–454.
Maia, I. G., Haenni, A.-L., and Bernardi, F. 1996. Potyviral HC-Pro: a multifunctional protein. Journal of General Virology 77:1335–1341.
Manasseh, R., Berim, A., Kappagantu, M., Moyo, L., Gang, D. R., and Pappu, H. R. 2023. Pathogen-triggered metabolic adjustments to potato virus Y infection in potato. Frontiers in Plant Science 13:1031629.
Masuta, C., Yamana, T., Tacahashi, Y., Uyeda, I., Sato, M., Ueda, S., and Matsumura, T. 2000. Development of clover yellow vein virus as an efficient, stable gene‐expression system for legume species. The Plant Journal 23:539–546.
Mei, Y., Liu, G., Zhang, C., Hill, J. H., and Whitham, S. A. 2019. A sugarcane mosaic virus vector for gene expression in maize. Plant Direct 3:e00158.
Mekuria, T., Bamunusinghe, D., Payton, M., and Verchot-Lubicz, J. 2008. Phloem unloading of Potato virus X movement proteins is regulated by virus and host factors. Molecular Plant-Microbe Interactions 21:1106–1117.
Mlotshwa, S., Verver, J., Sithole-Niang, I., Gopinath, K., Carette, J., Kammen, A. v., and Wellink, J. 2002. Subcellular location of the helper component-proteinase of Cowpea aphid-borne mosaic virus. Virus Genes 25:207–216.
Muthoni, J., Shimelis, H., Melis, R., and Kabira, J. 2012. Reproductive biology and early generation's selection in conventional potato breeding. Australian Journal of Crop Science 6:488–497.
Ogata, T., Toyoshima, M., Yamamizo-Oda, C., Kobayashi, Y., Fujii, K., Tanaka, K., Tanaka, T., Mizukoshi, H., Yasui, Y., and Nagatoshi, Y. 2021. Virus-mediated transient expression techniques enable functional genomics studies and modulations of betalain biosynthesis and plant height in quinoa. Frontiers in Plant Science 12:643499.
Pechinger, K., Chooi, K. M., MacDiarmid, R. M., Harper, S. J., and Ziebell, H. 2019. A new era for mild strain cross-protection. Viruses 11:670.
Pogue, G. P., Lindbo, J. A., Garger, S. J., and Fitzmaurice, W. P. 2002. Making an ally from an enemy: plant virology and the new agriculture. Annual Review of Phytopathology 40:45–74.
Poque, S., Wu, H.-W., Huang, C.-H., Cheng, H.-W., Hu, W.-C., Yang, J.-Y., Wang, D., and Yeh, S.-D. 2018. Potyviral gene-silencing suppressor HC-Pro interacts with salicylic acid (SA)-binding protein 3 to weaken SA-mediated defense responses. Molecular Plant-Microbe Interactions 31:86–100.
Quenouille, J., Vassilakos, N., and Moury, B. 2013. Potato virus Y: a major crop pathogen that has provided major insights into the evolution of viral pathogenicity. Molecular Plant Pathology 14:439–452.
Raja, J. A., Huang, C. H., Chen, C. C., Hu, W. C., Cheng, H. W., Goh, R. P., Chao, C. H., Tan, Y. R., and Yeh, S. D. 2022. Modification of the N‐terminal FWKG− αH1 element of potyviral HC‐Pro affects its multiple functions and generates effective attenuated mutants for cross‐protection. Molecular Plant Pathology 23:947–965.
Rajamäki, M.-L., Kelloniemi, J., Alminaite, A., Kekarainen, T., Rabenstein, F., and Valkonen, J. P. 2005. A novel insertion site inside the potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions. Virology 342:88–101.
Rupar, M., Faurez, F., Tribodet, M., Gutiérrez-Aguirre, I., Delaunay, A., Glais, L., Kriznik, M., Dobnik, D., Gruden, K., and Jacquot, E. 2015. Fluorescently tagged Potato virus Y: a versatile tool for functional analysis of plant-virus interactions. Molecular Plant-Microbe Interactions 28:739–750.
Saha, S., and Mäkinen, K. 2020. Insights into the functions of eIF4E-binding motif of VPg in potato virus A infection. Viruses 12:197.
Salvador, B., Delgadillo, M., Sáenz, P., García, J., and Simón-Mateo, C. 2008. Identification of Plum pox virus pathogenicity determinants in herbaceous and woody hosts. Molecular Plant-Microbe Interactions 21:20–29.
Schubert, J., Fomitcheva, V. and Sztangret-Wiśniewska, J. 2007. Differentiation of Potato virus Y strains using improved sets of diagnostic PCR-primers. Journal of Virological Methods 140.1-2: 66-74.
Senthil-Kumar, M., and Mysore, K. S. 2011. New dimensions for VIGS in plant functional genomics. Trends in Plant Science 16:656–665.
Senthil-Kumar, M., Anand, A., Uppalapati, S. R., and Mysore, K. S. 2008. Virus-induced gene silencing and its applications. CABI Reviews 165: 1404–1421.
Seo, J.-K., Lee, H.-G., and Kim, K.-H. 2009. Systemic gene delivery into soybean by simple rub-inoculation with plasmid DNA of a Soybean mosaic virus-based vector. Archives of Virology 154:87–99.
Seo, J.-K., Choi, H.-S., and Kim, K.-H. 2016. Engineering of soybean mosaic virus as a versatile tool for studying protein–protein interactions in soybean. Scientific Reports 6:22436.
Shi, G., Hao, M., Tian, B., Cao, G., Wei, F., and Xie, Z. 2021. A methodological advance of tobacco rattle virus-induced gene silencing for functional genomics in plants. Frontiers in Plant Science 12:671091.
Sztuba-Solińska, J., Stollar, V., and Bujarski, J. J. 2011. Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology 412:245–255.
Tena Fernandez, F., González, I., Doblas, P., Rodríguez, C., Sahana, N., Kaur, H., Tenllado, F., Praveen, S., and Canto, T. 2013. The influence of cis‐acting P1 protein and translational elements on the expression of Potato virus Y helper‐component proteinase (HCPro) in heterologous systems and its suppression of silencing activity. Molecular Plant Pathology 14:530–541.
Torrance, L., and Talianksy, M. E. 2020. Potato Virus Y emergence and evolution from the Andes of South America to become a major destructive pathogen of potato and other solanaceous crops worldwide. Viruses 12:1430.
Torrance, L., Andreev, I. A., Gabrenaite-Verhovskaya, R., Cowan, G., Mäkinen, K., and Taliansky, M. E. 2006. An unusual structure at one end of potato potyvirus particles. Journal of Molecular Biology 357:1–8.
Tuo, D., Zhou, P., Zhao, G., Yan, P., Tan, D., Li, X., and Shen, W. 2020. A double mutation in the conserved motifs of the helper component protease of papaya leaf distortion mosaic virus for the generation of a cross-protective attenuated strain. Phytopathology 110:187–193.
Tuo, D., Yan, P., Zhao, G., Cui, H., Zhu, G., Liu, Y., Yang, X., Wang, H., Li, X., and Shen, W. 2021. An efficient papaya leaf distortion mosaic potyvirus vector for virus-induced gene silencing in papaya. Horticulture research 8:144.
Tzean, Y., Lee, M.-C., Jan, H.-H., Chiu, Y.-S., Tu, T.-C., Hou, B.-H., Chen, H.-M., Chou, C.-N., and Yeh, H.-H. 2019. Cucumber mosaic virus-induced gene silencing in banana. Scientific Reports 9:11553.
Valli, A. A., Gallo, A., Rodamilans, B., López‐Moya, J. J., and García, J. A. 2018. The HC-Pro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. Molecular Plant Pathology 19:744–763.
Verchot, J. 2022. Potato virus X: A global potato‐infecting virus and type member of the Potexvirus genus. Molecular Plant Pathology 23:315–320.
Visvanathan, R., Jayathilake, C., Chaminda Jayawardana, B., and Liyanage, R. 2016. Health‐beneficial properties of potato and compounds of interest. Journal of the Science of Food and Agriculture 96:4850–4860.
Wang, L., Shi, W., Aziz, A., Wang, X., Liu, H., Shen, W., Cui, H., and Dai, Z. 2024. Mutating the arginine residue within the FRNK motif of telosma mosaic virus (TelMV) HC‐Pro protein attenuates viral infection and confers effective protection against TelMV in passion fruit (Passiflora edulis). Pest Management Science 80:5256–5265.
Wang, Y., Cong, Q.-Q., Lan, Y.-F., Geng, C., Li, X.-D., Liang, Y.-C., Yang, Z.-Y., Zhu, X.-P., and Li, X.-D. 2014. Development of new potato virus X-based vectors for gene over-expression and gene silencing assay. Virus Research 191:62–69.
Waterhouse, P. M., Wang, M.-B., and Lough, T. 2001. Gene silencing as an adaptive defence against viruses. Nature 411:834–842.
Wijesinha-Bettoni, R., and Mouillé, B. 2019. The contribution of potatoes to global food security, nutrition and healthy diets. American Journal of Potato Research 96:139–149.
Wu, C., Jia, L., and Goggin, F. 2011. The reliability of virus‐induced gene silencing experiments using tobacco rattle virus in tomato is influenced by the size of the vector control. Molecular Plant Pathology 12:299–305.
Wu, H.-Y., Liu, K.-H., Wang, Y.-C., Wu, J.-F., Chiu, W.-L., Chen, C.-Y., Wu, S.-H., Sheen, J., and Lai, E.-M. 2014. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10:19.
Xie, W., Marty, D. M., Xu, J., Khatri, N., Willie, K., Moraes, W. B., and Stewart, L. R. 2021. Simultaneous gene expression and multi-gene silencing in Zea mays using maize dwarf mosaic virus. BMC Plant Biology 21:208.
Xu, J., Li, Y., Kaur, L., Singh, J., and Zeng, F. 2023. Functional food based on potato. Foods 12:2145.
Xu, X.-J., Zhu, Q., Jiang, S.-Y., Yan, Z.-Y., Geng, C., Tian, Y.-P., and Li, X.-D. 2021. Development and evaluation of stable sugarcane mosaic virus mild mutants for cross-protection against infection by severe strain. Frontiers in Plant Science 12:788963.
Xu, X., Pan, P., Cheng, S., Zhang, B., Mu, D., Ni, P., Zhang, G., Yang, S., Li, R., and Wang, S. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.
Yang, X., Li, Y., and Wang, A. 2021. Research advances in potyviruses: from the laboratory bench to the field. Annual Review of Phytopathology 59:1–29.
Yeh, S.-D., and Gonsalves, D. 1984. Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 74:1086–1091.
Zaheer, K., and Akhtar, M. H. 2016. Potato production, usage, and nutrition—a review. Critical Reviews in Food Science and Nutrition 56:711–721.
Zaidi, S. S.-e.-A., and Mansoor, S. 2017. Viral vectors for plant genome engineering. Frontiers in Plant Science 8:539.
Zhang, M., Gong, P., Ge, L., Chang, Z., Cheng, X., Zhou, X., Wang, A., and Li, F. 2021. Nuclear exportin 1 facilitates turnip mosaic virus infection by exporting the sumoylated viral replicase and by repressing plant immunity. New Phytologist 232:1382–1398.
Ziebell, H., and Carr, J. P. 2010. Cross-protection: a century of mystery. Advances in Virus Research 76: 211–264.
Zulfiqar, S., Farooq, M. A., Zhao, T., Wang, P., Tabusam, J., Wang, Y., Xuan, S., Zhao, J., Chen, X., and Shen, S. 2023. Virus-induced gene silencing (VIGS): a powerful tool for crop improvement and its advancement towards epigenetics. International Journal of Molecular Sciences 24:5608.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98673-
dc.description.abstract馬鈴薯 (Solanum tuberosum subsp. tuberosum) 是世界上重要的非穀類作物。馬鈴薯產業在台灣連年成長,目前也培育出多新品種,如台農一號、種苗二號和台農四號。為了提升馬鈴薯的產量及增強其抗病與抗逆境能力,深入探索參與農藝性狀改良的關鍵基因至關重要。一般分析基因的方法依靠轉基因技術,然而常見的馬鈴薯品種為四倍體,再加上其自交不親和的特性使得轉基因技術應用於馬鈴薯的效率低且耗時耗力。為了克服這些障礙,開發病毒載體以進行基因功能性分析為當務之急。反向遺傳學技術,如病毒誘導基因靜默 (virus-induce gene silencing, VIGS) 和病毒介導的過表達 (virus-mediated protein overexpression ,VOX),能透過調控基因表現快速影響植物表型變化,因而成為研究馬鈴薯基因功能的重要工具。此技術可應用於研究植物的抗病蛋白與病原的相互作用與作用機制。本研究選擇馬鈴薯 Y 病毒 (potato virus Y, PVY) 做為病毒載體開發對象,PVY 編碼一多聚蛋白,並經由病毒蛋白酶裂解成多個成熟的蛋白。此策略的優點為可以同時將多個外源序列插入 PVY 基因體中進行表現,使其與病毒多蛋白共同轉譯後經蛋白酶裂解,實現多個外源序列之同步表現。為建立以 PVY 為基礎之病毒載體,本研究首先自雲林分離獲得弱毒株 PVY (PVY-96NTNa),與強毒株 PVY-33N-Wi 相比,PVY-96NTNa 不僅未引起明顯病徵,亦表現出更快速且更高的病毒累積量。此外,進一步比較兩分離株之 P1/HC-Pro 及 VPg 蛋白之 RNA 靜默抑制能力 (RNA silencing suppressor, RSS)後發現,PVY-96NTNa 之 RSS 能力並未顯著低於 PVY-33N-Wi,揭示其致病力削弱可能與 RSS 能力無直接關聯。接續地,本研究成功將 PVY-96NTNa 之全長 cDNA 構築為感染性選殖株 pPVYm。為進一步改造pPVYm 成為雙重表達病毒載體 pPVY-dual,分別於 P1/HC-Pro 與 NIb/CP 交界處插入兩個限制酶切位 BstZ17I 與 SnaBI,後續將類胡蘿蔔素酶 (phytoene desaturase, PDS) 之部分基因片段及綠色螢光蛋白 (green fluorescent protein, GFP) 之完整編碼序列插入雙基因插入框中,以評估其基因靜默與外源蛋白表現之能力。結果顯示,pPVY-dual 能有效表現 GFP,且其 GFP 插入片段於後代植株中仍可穩定存在。然而,pPVY-dual 並未成功誘導 PDS 基因靜默。儘管目前尚未建立高效率之 VIGS 系統,但 pPVY-dual 具備低致病性、高複製能力、遺傳穩定及雙插入位點設計等特性,顯示其具潛力發展為應用於馬鈴薯功能基因體學研究之 PVY 病毒載體平台。zh_TW
dc.description.abstractPotato (Solanum tuberosum subsp. tuberosum) is one of the world's most important non-cereal crops. The potato industry in Taiwan has seen continuous growth in recent years. To improve potato traits such as yield and resistance to biotic and abiotic stresses, identifying and characterizing key genes involved in these processes is essential for effective trait enhancement. Traditional methods for gene functional analysis rely on transgenic technologies; however, most cultivated potato varieties are tetraploid and exhibit self-incompatibility, making the application of transgenic technologies in potatoes inefficient and time-consuming. To overcome these obstacles, it is important to develop virus vectors for functional gene analysis including virus-induced gene silencing, (VIGS) and virus-mediated protein overexpression (VOX). In this study, we select potato virus Y (PVY) for development of viral vector, since PVY encodes one large polyprotein and further cut by proteases into many mature proteins. The advantage of using this strategy is that multiple foreign sequences can be inserted into the PVY genome to encode a polyprotein with foreign sequences and then be cleaved by proteases leading to simultaneous expression of multiple foreign sequences. To develop a PVY-based viral vector, we first identified a mild strain of PVY (PVY-96NTNa) isolated from Yunlin. Compared to the severe strain PVY-33N-Wi, PVY-96NTNa accumulates more rapidly and to higher levels, yet causes no visible symptoms. Moreover, the RNA silencing suppressor (RSS) activities of P1/HC-Pro and VPg in PVY-96NTNa are not significantly different from those in PVY-33N-Wi, suggesting that the attenuated pathogenicity of PVY-96NTNa may not be directly linked to its RSS capacity. The full-length cDNA of the PVY-96NTNa isolate was cloned to generate an infectious clone, designated pPVYm. To further engineer pPVYm as the dual-expression vector, pPVY-dual, two restriction sites, BstZ17I and SnaBI, were subsequently introduced into the PVY-96 genome at the P1/HC-Pro and NIb/CP junctions, respectively. Subsequently, a partial fragment of the PHYTOENE DESATURASE (PDS) gene and the coding sequence of green fluorescent protein (GFP) were inserted into the pPVY-dual vector to assess its gene silencing and expression capabilities, respectively. Our results showed that pPVY-dual can successfully express GFP and the GFP cassette remained intact in the next host generation. By contrast, pPVY-dual failed to perform VIGS. Although high-efficiency VIGS has not yet been achieved, the low symptom severity, high replication capacity, genetic stability, and dual-insertion cassette design of pPVY-dual provide a robust platform for the future development of PVY-based tools in functional genomics in potato.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:18:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:18:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
中文摘要 II
ABSTRACT IV
目次 VI
表次 XI
圖次 XII
壹、 前言 1
一、 馬鈴薯作物背景與研究挑戰 2
(一) 馬鈴薯的生物學與經濟重要性 2
(二) 馬鈴薯基因組特性與研究現況 2
(三) 多倍體作物中基因功能研究的挑戰與需求 3
二、 植物病毒載體的發展與應用 4
(一) 病毒載體歷史 4
(二) VIGS 機制 4
(三) VOX 機制 5
(四) 病毒載體 6
(五) 其他應用 6
三、 馬鈴薯病毒載體之應用現況與挑戰 7
四、 PVY 作為病毒載體應用於馬鈴薯之潛力 8
(一) PVY 的生物學與特性 8
(二) PVY 致病力探討 9
五、 PVY病毒載體之開發策略 11
(一) 弱毒系統之必要性 11
(二) 雙重表達病毒載體之設計 11
六、 研究動機與目的 13
貳、 材料與方法 14
一、 植物材料及生長條件 14
(一) 圓葉菸草 (Nicotiana benthamiana) 14
(二) 馬鈴薯 (Solanum tuberosum L.) 14
二、 病毒分離與弱毒系統篩選 14
(一) 植物病毒接種 14
(二) 總量 RNA 萃取 15
(三) 反轉錄聚合酶連鎖反應 (reverse transcription polymerase chain reaction, RT-PCR) 15
(四) 瓊脂糖凝膠電泳分析 16
(五) PVY 分離株之病毒系統鑑定 16
(六) 序列稀釋終點純化病毒 17
三、 PVY-96NTNa 感染性選殖株之構築 17
(一) 增幅 PVY-96NTNa 基因體全長 17
(二) PVY-96NTNa 感染性選殖株構築 20
四、 雙重表達載體 pPVY-dual 的設計與構築 22
(一) 限制酶切位插入 22
(二) 雙重表達載體之構築 23
五、 pPVYm 感染性選殖株及 pPVY-dual 病毒載體之感染力試驗 24
(一) 電穿孔法轉型於農桿菌 24
(二) 農桿菌接種試驗 25
六、 即時定量聚合酶連鎖式反應 (Real-time quantitative polymerase chain reaction, RT-qPCR) 26
(一) DNase 處理 26
(二) 即時定量聚合酶連鎖式反應 (Real-time quantitative polymerase chain reaction, RT-qPCR) 26
七、 西方墨點法 (Western blot) 27
(一) 、植物蛋白之萃取 27
(二) 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 27
(三) 蛋白質轉印 28
(四) 抗體反應與偵測 28
八、 菸草葉片之螢光顯微鏡觀察 29
九、 弱毒系統 (PVY-96NTNa) 與強毒系統 (PVY-33N-Wi) 比較分析 29
(一) PVY-96NTNa 胺基酸序列比對 29
(二) RNA 靜默抑制活性 (RNA silencing suppressor, RSS) 功能測試 29
參、 結果 31
一、 PVY 分離株致病力分析 31
二、 PVY 分離株之病毒系統鑑定 31
三、 PVY-33N-Wi 及 PVY-96NTNa 分離株於馬鈴薯寄主上致病力分析 32
四、 PVY-33N-Wi 及 PVY-96NTNa 分離株之累積量動態變化 33
五、 PVY-96NTNa 全長 cDNA 感染性選殖株之構築 33
(一) PVY 5’ 端序列定序與專一性引子設計 34
(二) PVY-96NTNa 感染性選殖株之構築 34
(三) pPVYm 感染性選殖株感染性測試 35
六、 基因功能性分析病毒載體的構築 36
(一) pPVY-dual 病毒載體感染性測試 36
(二) pPVY-dual 之外源基因過表達能力評估——以 GFP 為範例 37
(三) pPVY-dual 之外源基因靜默能力評估——以 phytoene desaturase (PDS) 為範例 39
七、 PVY-96NTNa 及 PVY-33N-Wi 之比較 40
(一) 序列差異 40
(二) RSS 能力比較 40
肆、 討論 42
一、 以 PVY-96NTNa 弱病毒系統為基礎之病毒載體開發潛力探討 42
(一) PVY-96NTNa 致病力探討 42
(二) PVY-96NTNa 累積量動態變化 44
(三) pPVYm 及 pPVY-dual 感染性分析 44
二、 病毒載體 pPVY-dual 表達外源基因 45
(一) 插入位點對外源基因表現之影響比較 45
(二) GFP 螢光訊號移動方式 46
(三) GFP 於細胞之定位 47
(四) 過表達載體之穩定性探討 48
(五) 病毒載體 pPVY-dual 進行 VIGS 49
三、 PVY 與 PVX 載體之優勢探討 50
四、 PVY 不同病毒株致病力差異之分子基礎 51
五、 研究限制與未來展望 53
(一) pPVY-dual 面臨之挑戰 53
(二) 應用 pPVY-dual 進行基因功能性分析 53
(三) 交互保護 54
(四) 未來研究方向 54
六、 結論 55
伍、 參考文獻 56
陸、 附表 67
柒、 附圖 74
捌、 附錄 105
-
dc.language.isozh_TW-
dc.subject馬鈴薯zh_TW
dc.subject基因功能性分析zh_TW
dc.subject馬鈴薯病毒Yzh_TW
dc.subject感染性選殖株zh_TW
dc.subject病毒載體zh_TW
dc.subject雙重表達載體zh_TW
dc.subjectViral vectoren
dc.subjectDual-expression vectoren
dc.subjectPotatoen
dc.subjectFunctional genomics analysisen
dc.subjectPotato virus Yen
dc.subjectInfectious cloneen
dc.title馬鈴薯 Y 病毒雙重表達載體之開發zh_TW
dc.titleDevelopment of a Potato virus Y-based dual expression vectoren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳宗祺;張賀雄;曾昱zh_TW
dc.contributor.oralexamcommitteeTsung-Chi Chen;Ho-Hsiung Chang;Yuh Tzeanen
dc.subject.keyword馬鈴薯,基因功能性分析,馬鈴薯病毒Y,感染性選殖株,病毒載體,雙重表達載體,zh_TW
dc.subject.keywordPotato,Functional genomics analysis,Potato virus Y,Infectious clone,Viral vector,Dual-expression vector,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202503580-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
dc.date.embargo-lift2030-08-03-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-03
6.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved