請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98667完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅 | zh_TW |
| dc.contributor.advisor | Chih-I Wu | en |
| dc.contributor.author | 許大為 | zh_TW |
| dc.contributor.author | Ta-Wei Hsu | en |
| dc.date.accessioned | 2025-08-18T01:16:55Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | [1] Burg, D. and J.H. Ausubel, Moore’s Law revisited through Intel chip density. PloS one, 2021. 16(8): p. e0256245.
[2] Mack, C.A., Fifty years of Moore's law. IEEE Transactions on semiconductor manufacturing, 2011. 24(2): p. 202–207. [3] Ferain, I., C.A. Colinge, and J.-P. Colinge, Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature, 2011. 479(7373): p. 310–316. [4] Khanna, V.K. and V.K. Khanna, Short-channel effects in MOSFETs. Integrated nanoelectronics: nanoscale CMOS, post-CMOS and allied nanotechnologies, 2016: p. 73–93. [5] Chaudhry, A. and M.J. Kumar, Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Transactions on Device and Materials Reliability, 2004. 4(1): p. 99–109. [6] Xie, Q., J. Xu, and Y. Taur, Review and critique of analytic models of MOSFET short-channel effects in subthreshold. IEEE transactions on electron devices, 2012. 59(6): p. 1569–1579. [7] Wei, T., et al., Two dimensional semiconducting materials for ultimately scaled transistors. IScience, 2022. 25(10). [8] Hau-Riege, C.S., An introduction to Cu electromigration. Microelectronics Reliability, 2004. 44(2): p. 195–205. [9] Hu, C.-K., L. Gignac, and R. Rosenberg, Electromigration of Cu/low dielectric constant interconnects. Microelectronics reliability, 2006. 46(2-4): p. 213–231. [10] Trivedi, V.P. and J.G. Fossum, Scaling fully depleted SOI CMOS. IEEE Transactions on Electron devices, 2003. 50(10): p. 2095–2103. [11] Tsutsui, G., et al., Strain engineering in functional materials. AIP Advances, 2019. 9(3). [12] Natarajan, S., et al. A 32nm logic technology featuring 2 nd-generation high-k+ metal-gate transistors, enhanced channel strain and 0.171 μm 2 SRAM cell size in a 291Mb array. in 2008 IEEE International Electron Devices Meeting. 2008. IEEE. [13] Gusev, E., et al. Ultrathin high-K gate stacks for advanced CMOS devices. in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224). 2001. IEEE. [14] Doyle, B., et al., High performance fully-depleted tri-gate CMOS transistors. IEEE Electron Device Letters, 2003. 24(4): p. 263–265. [15] Pal, R.S., S. Sharma, and S. Dasgupta. Recent trend of FinFET devices and its challenges: A review. in 2017 Conference on Emerging Devices and Smart Systems (ICEDSS). 2017. IEEE. [16] Mukesh, S. and J. Zhang, A review of the gate-all-around nanosheet FET process opportunities. Electronics, 2022. 11(21): p. 3589. [17] Radamson, H.H., et al., CMOS scaling for the 5 nm node and beyond: Device, process and technology. Nanomaterials, 2024. 14(10): p. 837. [18] Du, Y., et al., Review of highly mismatched III-V heteroepitaxy growth on (001) silicon. Nanomaterials, 2022. 12(5): p. 741. [19] Gougousi, T., Atomic layer deposition of high-k dielectrics on III–V semiconductor surfaces. Progress in Crystal Growth and Characterization of Materials, 2016. 62(4): p. 1–21. [20] Geim, A.K., Graphene: status and prospects. science, 2009. 324(5934): p. 1530–1534. [21] Xu, X., et al., Interfacial engineering in graphene bandgap. Chemical Society Reviews, 2018. 47(9): p. 3059–3099. [22] Shanmugam, V., et al., A review of the synthesis, properties, and applications of 2D materials. Particle & Particle Systems Characterization, 2022. 39(6): p. 2200031. [23] Bian, R., et al., Recent progress in the synthesis of novel two-dimensional van der Waals materials. National Science Review, 2022. 9(5): p. nwab164. [24] Mujib, S.B., et al., Design, characterization, and application of elemental 2D materials for electrochemical energy storage, sensing, and catalysis. Materials Advances, 2020. 1(8): p. 2562–2591. [25] Chhowalla, M., D. Jena, and H. Zhang, Two-dimensional semiconductors for transistors. Nature Reviews Materials, 2016. 1(11): p. 1–15. [26] Queisser, H.J. and E.E. Haller, Defects in semiconductors: some fatal, some vital. Science, 1998. 281(5379): p. 945–950. [27] Liu, Y., et al., Two-dimensional transistors beyond graphene and TMDCs. Chemical Society Reviews, 2018. 47(16): p. 6388–6409. [28] Jiang, B., et al., Interface engineering for two-dimensional semiconductor transistors. Nano Today, 2019. 25: p. 122–134. [29] Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43–53. [30] Cheng, Q., et al., WSe2 2D p‐type semiconductor‐based electronic devices for information technology: design, preparation, and applications. InfoMat, 2020. 2(4): p. 656–697. [31] Bhowmik, S. and A.G. Rajan, Chemical vapor deposition of 2D materials: A review of modeling, simulation, and machine learning studies. Iscience, 2022. 25(3). [32] Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116–130. [33] Vogel, E.M. and J.A. Robinson, Two-dimensional layered transition-metal dichalcogenides for versatile properties and applications. MRS Bulletin, 2015. 40(7): p. 558–563. [34] Sahoo, D., S. Senapati, and R. Naik, Progress and prospects of 2D VS2 transition metal dichalcogenides. FlatChem, 2022. 36: p. 100455. [35] Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 2012. 7(11): p. 699–712. [36] Sahin, H., et al., Anomalous Raman spectra and thickness-dependent electronic properties of WSe 2. Physical Review B—Condensed Matter and Materials Physics, 2013. 87(16): p. 165409. [37] Huang, J.-K., et al., Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS nano, 2014. 8(1): p. 923–930. [38] Zhou, H., et al., Large Area Growth and Electrical Properties of p-Type WSe2 Atomic Layers. Nano Letters, 2015. 15(1): p. 709–713. [39] Khan, M., et al., Electronic and optical properties of vacancy defects in single-layer transition metal dichalcogenides. Physical Review B, 2017. 95(24): p. 245435. [40] Yong, X., et al., Effects of Vacancy Defects on Electrical and Optical Properties of ZnO/WSe2 Heterostructure: First-Principles Study. Metals, 2022. 12(11): p. 1975. [41] Kang, Y. and S. Han, An origin of unintentional doping in transition metal dichalcogenides: the role of hydrogen impurities. Nanoscale, 2017. 9(12): p. 4265–4271. [42] Hong, M., et al., Universal transfer of full‐class metal electrodes for barrier‐free two‐dimensional semiconductor contacts. InfoMat, 2024. 6(1): p. e12491. [43] Liu, W., et al., Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano letters, 2013. 13(5): p. 1983–1990. [44] Wan, D., et al., High voltage gain WSe 2 complementary compact inverter with buried gate for local doping. IEEE Electron Device Letters, 2020. 41(6): p. 944–947. [45] Ji, H.G., et al., Chemically tuned p‐and n‐type WSe2 monolayers with high carrier mobility for advanced electronics. Advanced Materials, 2019. 31(42): p. 1903613. [46] Liu, A., et al., The roadmap of 2D materials and devices toward chips. Nano-Micro Letters, 2024. 16(1): p. 119. [47] Feng, P., et al., A high-performance self-powered photodetector based on WSe 2–graphene–MoTe 2 van der Waals heterojunctions. Journal of Materials Chemistry C, 2022. 10(24): p. 9401–9406. [48] Zhang, K., et al., Ultrasensitive near-infrared photodetectors based on a graphene–MoTe2–graphene vertical van der Waals heterostructure. ACS applied materials & interfaces, 2017. 9(6): p. 5392–5398. [49] Xiao, P., et al., Visible near-infrared photodetection based on Ta2NiSe5/WSe2 van der Waals heterostructures. Sensors, 2023. 23(9): p. 4385. [50] Donarelli, M. and L. Ottaviano, 2D materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene. Sensors, 2018. 18(11): p. 3638. [51] Jayachandran, D., N.U. Sakib, and S. Das, 3D integration of 2D electronics. Nature Reviews Electrical Engineering, 2024. 1(5): p. 300–316. [52] Harris, D. and N. Weste, Cmos vlsi design. ed: Pearson Education, Inc, 2010. [53] Uyemura, J.P., The CMOS Inverter: Analysis and Design. CMOS Logic Circuit Design, 2001: p. 103–154. [54] Kumar, A.A., Fundamentals of digital circuits. 2016: PHI Learning Pvt. Ltd. [55] Kang, S.M. and Y. Leblebici, CMOS digital integrated circuits. 2003: MacGraw-Hill New York, NY, USA:. [56] 西久保靖彦, 図解入門よくわかる最新ディスプレイ技術の基本と仕組み: 液晶, 有機 EL, プラズマ, 電子ペーパー. 2003: 秀和システム. [57] Zhang, Y., et al., Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS nano, 2013. 7(10): p. 8963–8971. [58] Węglowski, M.S., S. Błacha, and A. Phillips, Electron beam welding–Techniques and trends–Review. Vacuum, 2016. 130: p. 72–92. [59] Diez, S. The next generation of maskless lithography. in Emerging Digital Micromirror Device Based Systems and Applications VIII. 2016. SPIE. [60] Tomer, S., et al., Importance of precursor delivery mechanism for Tetra-kis-ethylmethylaminohafnium/water atomic layer deposition process. Thin Solid Films, 2019. 692: p. 137629. [61] Kulkarni, K.S., Synthesis and characterization of silver-ceria nano-composites. 2018, California State University, Chico. [62] Moura, C.C., et al., Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. Journal of The Royal Society Interface, 2016. 13(118): p. 20160182. [63] Baykara, M.Z. and U. Schwarz, Atomic force microscopy: Methods and applications. Encyclopedia of spectroscopy and spectrometry, 2017. 1: p. 70–75. [64] Tang, C. and Z. Yang, Transmission electron microscopy (TEM), in Membrane characterization. 2017, Elsevier. p. 145–159. [65] Dobrescu, L., et al. Threshold voltage extraction methods for MOS transistors. in 2000 International Semiconductor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No. 00TH8486). 2000. IEEE. [66] Es-Sakhi, A. and M.H. Chowdhury. Analytical model to estimate the subthreshold swing of SOI FinFET. in 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS). 2013. IEEE. [67] Zhang, J.-L., et al., Modeling of direct tunneling and surface roughness effects on C–V characteristics of ultra-thin gate MOS capacitors. Solid-State Electronics, 2001. 45(2): p. 373–377. [68] Ding, M., The radiation response of hafnium oxide based metal-oxide-semiconductor capacitors under 60 Co gamma ray. IEEE Transactions on Dielectrics and Electrical Insulation, 2019. 26(1): p. 10–16. [69] Kim, C., et al., Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS nano, 2017. 11(2): p. 1588–1596. [70] Chou, A.-S., et al. Antimony semimetal contact with enhanced thermal stability for high performance 2D electronics. in 2021 IEEE International Electron Devices Meeting (IEDM). 2021. IEEE. [71] Shen, P.-C., et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021. 593(7858): p. 211–217. [72] Chen, Y.-H., et al., P-Type Ohmic Contact to Monolayer WSe2 Field-Effect Transistors Using High-Electron Affinity Amorphous MoO3. ACS Applied Electronic Materials, 2022. 4(11): p. 5379–5386. [73] Zhou, C., et al., Carrier type control of WSe2 field‐effect transistors by thickness modulation and MoO3 layer doping. Advanced functional materials, 2016. 26(23): p. 4223–4230. [74] Seo, J., et al., Effect of Facile p-Doping on Electrical and Optoelectronic Characteristics of Ambipolar WSe 2 Field-Effect Transistors. Nanoscale Research Letters, 2019. 14: p. 1–10. [75] Liang, Q., et al., Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides. Nano Research, 2020. 13: p. 3439–3444. [76] Ko, R., D.H. Lee, and H. Yoo, Annealing and doping effects on transition metal dichalcogenides—based devices: a review. Coatings, 2023. 13(8): p. 1364. [77] Hsu, C.-H., et al., Low-Power CMOS Inverter Using Homogeneous Monolayer WSe2 Channel with Polarity Control. IEEE Electron Device Letters, 2025. [78] Das, T., et al., Large-scale complementary logic circuit enabled by Al2O3 passivation-induced carrier polarity modulation in tungsten diselenide. ACS Applied Materials & Interfaces, 2023. 15(38): p. 45116–45127. [79] Chen, K., et al., Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density. Apl Materials, 2014. 2(9). [80] Jang, J., et al., Fermi‐Level Pinning‐Free WSe2 Transistors via 2D Van der Waals Metal Contacts and Their Circuits. Advanced Materials, 2022. 34(19): p. 2109899. [81] Jiang, X., et al., Preparation of Bi2O3/BiOI step-scheme heterojunction photocatalysts and their degradation mechanism of methylene blue. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2022. 37(5): p. 801–806. [82] Tosun, M., et al., High-gain inverters based on WSe2 complementary field-effect transistors. ACS nano, 2014. 8(5): p. 4948–4953. [83] Yu, L., et al., High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano letters, 2015. 15(8): p. 4928–4934. [84] Pu, J., et al., Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Advanced Materials, 2016. [85] Wang, A., et al., Controlling the Polarity of WSe2 FETs by Interface Engineering for High-Gain CMOS. ACS Applied Nano Materials, 2024. 7(5): p. 5507–5512. [86] Zhu, C., et al., Direct laser patterning of a 2D WSe2 logic circuit. Advanced Functional Materials, 2021. 31(21): p. 2009549. [87] Buchkov, K., et al., Metatungstate Chemical Vapor Deposition of WSe2: Substrate Effects, Shapes, and Morphologies. Crystals, 2024. 14(2): p. 184. [88] Kawanago, T., et al., Doping-Free Complementary Metal-Oxide-Semiconductor Inverter Based on N-Type and P-Type Tungsten Diselenide Field-Effect Transistors With Aluminum-Scandium Alloy and Tungsten Oxide for Source/Drain Contact. IEEE Journal of the Electron Devices Society, 2022. 11: p. 15–21. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98667 | - |
| dc.description.abstract | 本研究提出低功耗、高增益的互補式金屬氧化物半導體 (CMOS) 反相器之設計與製作方法,該元件以單層二硒化鎢 (WSe2) 為主體,並利用其內在的雙極性導電行為與可調控極性特性,設計出一組同質性的二維 CMOS 邏輯單元。透過使用三氧化鉬 (MoOx) 作為電洞摻雜層,以及鉍/金 (Bi/Au) 金屬作為 n 型電晶體的低功函數接觸電極,並將 n 型與 p 型元件整合於共同的 HfOx 高介電常數基板上,實現了不需異質材料的極性控制。進一步地,本研究引入 BiOx 作為電子摻雜介面層,以精確調控 n 型元件的臨界電壓 (VT),從而縮小 n 型與 p 型電晶體之間的 VT 差異,提升反相器的開關對稱性。
在 8 nm 厚的 HfOx 介電層與 VDD = 2 V 的條件下,所製作之 CMOS 反相器展現出完整的邏輯反轉行為,其最大電壓增益可達約 15.5,總雜訊容忍度約為 0.84 VDD,具備極低的靜態功耗優勢。當將介電層厚度縮減至 4 nm 時,由於電場控制能力增強,元件的增益進一步提升至 88.6,總雜訊容忍度則提升至約 0.94 VDD,驗證了在降低等效氧化層厚度的同時可顯著強化切換控制效果。 在引入 BiOx 摻雜層後,反相器之轉移曲線達成理想的開關點 (VM/VDD = 0.5),增益提升至約 19,雜訊容忍度亦擴展至約 0.895 VDD,顯示出優異的導通對稱性、切換陡度與抗干擾能力。 本研究結果驗證接觸工程方法與 BiOx/MoOx 雙摻雜策略在單一單層材料中實現性能均衡之互補邏輯的有效性。除電性表現外,本研究所建立的製程方法 —— 包括單層 WSe2 的 CVD 成長、圖案化舉離實現選擇性摻雜、以及可擴展 HfOx 基板上的整合 —— 皆具備良好的大面積製程相容性。 整體而言,本研究展現了透過極性控制實現同質 WSe2 CMOS 邏輯的可行性與可擴展性,並作為邁向全二維半導體基礎電子系統之關鍵一步,對於實現高能效、電路等級優異的次世代電子裝置具有重要意義。 | zh_TW |
| dc.description.abstract | This study presents the design and fabrication of a low-power, high-gain complementary metal-oxide-semiconductor (CMOS) inverter based on monolayer tungsten diselenide (WSe2). Leveraging the intrinsic ambipolar transport characteristics and polarity-tunable properties of WSe2, a homogeneous two-dimensional CMOS logic unit was successfully developed. By employing molybdenum trioxide (MoOx) as a hole-doping layer and a Bi/Au metal as a low-work-function contact for the n-type transistor, the n-type and p-type devices were integrated on a common HfOx high-κ dielectric substrate, enabling effective polarity control without the need for heterogeneous materials. To further optimize device performance, a BiOx electron-doping interfacial layer was introduced to finely adjust the threshold voltage (VT) of the n-type device, thereby reducing the VT mismatch between the n- and p-type transistors and improving the inverter's switching symmetry.
Under the condition of an 8 nm HfOx dielectric and a supply voltage (VDD) of 2 V, the fabricated CMOS inverter exhibited full logic inversion behavior with a maximum voltage gain of approximately 15.5 and a total noise margin of about 0.84 VDD, while maintaining an extremely low static power consumption. When the dielectric thickness was reduced to 4 nm, enhanced electrostatic control led to a significant increase in gain to 88.6 and a noise margin of around 0.94 VDD, demonstrating the advantages of scaling the equivalent oxide thickness. Upon the introduction of the BiOx doping layer, the inverter’s transfer curve achieved an ideal switching point (VM/VDD = 0.5), with the gain further improved to approximately 19 and the noise margin extended to around 0.895 VDD, indicating excellent symmetry, sharp switching, and strong noise immunity. The results of this study validate the effectiveness of the contact engineering approach and the BiOx/MoOx dual-doping strategy in realizing balanced complementary logic within a single monolayer material. Beyond the favorable electrical performance, the established fabrication process—including CVD growth of monolayer WSe2, patterned lift-off doping, and integration on scalable HfOx substrates—offers excellent compatibility with large-area processing. In summary, this work demonstrates the feasibility and scalability of polarity-controlled homogeneous WSe2 CMOS logic and represents a key step toward the development of fully two-dimensional semiconductor-based electronic systems. The findings hold significant potential for enabling next-generation electronic devices with high energy efficiency and robust circuit-level performance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:16:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:16:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目次 v 圖次 ix 表次 xiii 第一章 緒論 1 1.1 二維材料簡介 1 1.1.1 半導體摩爾定律之發展瓶頸 1 1.1.2 二維材料之背景及發展 4 1.1.3 二維材料之特性與優勢 5 1.1.4 二維材料製備方式 7 1.2 過度金屬二硫族化合物簡介 8 1.2.1 過度金屬二硫化物結構與基本特性 8 1.2.2 二硒化鎢結構與光學特性 9 1.2.3 二硒化鎢雙極性特性 12 1.3 互補式金屬氧化物半導體反相器簡介 16 1.3.1 反相器之類型與發展介紹 16 1.3.2 CMOS反相器之元件結構與基礎原理 19 1.4 研究動機 21 第二章 實驗方法與理論 23 2.1 製程儀器 23 2.1.1 低壓化學氣相沉積系統 23 2.1.2 快速熱退火 24 2.1.3 電子束微影製程 25 2.1.4 電子式蒸鍍機 26 2.1.5 無光罩式步進曝光機 28 2.1.6 原子層沉積系統 29 2.1.7 電漿增強化學氣相沉積 31 2.2 量測儀器 32 2.2.1 光致發光及拉曼光譜分析儀 32 2.2.2 光電子能譜儀 34 2.2.3 原子力顯微鏡 36 2.2.4 穿透式電子顯微鏡 37 2.2.5 電性量測系統 38 2.3 濕式轉移單層二硒化鎢 40 2.4 場效電晶體電性參數萃取方法 41 2.4.1 臨界電壓 41 2.4.2 場效遷移率 43 2.4.3 次臨界擺幅、電流開關比、閘極漏電流 44 2.4.4 高介電常數材料與等效氧化層厚度 46 2.5 CMOS反相器特性參數萃取方法 47 2.5.1 電壓轉換特性與電壓定義 47 2.5.2 電壓轉換特性之工作原理 49 2.5.3 電壓增益 54 2.5.4 平均靜態功耗與峰值功耗 54 2.5.5 雜訊邊界特性 56 第三章 N/P型電晶體之特性分析 58 3.1 高介電常數二氧化鉿基板之基本原理 58 3.2 雙極性二硒化鎢製成n型電晶體之製備方法 59 3.2.1 選擇功函數與二硒化鎢匹配之接觸電極 59 3.3 雙極性二硒化鎢製成p型電晶體之製備方法 62 3.3.1 利用MoOx對二硒化鎢進行電洞摻雜 63 3.4 建構CMOS反相器備製流程問題與分析 66 3.4.1 探討PMMA作為MoOx阻隔層之製程流程 66 第四章 二硒化鎢CMOS反相器電性結果與分析 70 4.1 CMOS反相器備製流程 70 4.2 CMOS反相器電性結果與分析 71 4.2.1 反相器中N/P電晶體轉移特性曲線分析 71 4.2.2 反相器電壓轉移特性 72 4.2.3 以電晶體輸出曲線擬合反相器電壓轉移特性分析 73 4.2.4 反相器問題與改善方式探討 76 4.3 利用低等效介電層厚度基板改善之CMOS反相器 78 4.3.1 反相器中N/P電晶體轉移特性曲線分析 78 4.3.2 反相器電壓轉移特性 80 4.3.3 以電晶體輸出曲線擬合反相器電壓轉移特性分析 82 4.4 不同等效介電層厚度之反相器分析與比較 83 4.4.1 反相器雜訊邊界特性及分析比較 83 4.4.2 反相器電壓增益以及功耗萃取分析比較 85 4.4.3 不同供應電壓下之反相器各項電性分析與比較 89 4.5 二硒化鎢CMOS反相器問題與分析 93 第五章 利用電子摻雜層改善之二硒化鎢CMOS反相器 95 5.1 利用不同摻雜層對二硒化鎢進行電子摻雜之分析 95 5.1.1 利用AlOx摻雜層進行電子摻雜之電性結果與分析 95 5.1.2 利用SiNx摻雜層進行電子摻雜之電性結果與分析 97 5.1.3 利用BiOx摻雜層進行電子摻雜之電性結果與分析 99 5.1.4 綜合討論與分析 101 5.2 探討引入BiOx摻雜層之介面分析與其電晶體轉移特性曲線 102 5.2.1 X光電子能譜分析 102 5.2.2 紫外光電子能譜分析 103 5.2.3 電晶體轉移特性曲線分析 105 5.3 探討引入電子摻雜層改善之CMOS反相器備製流程與問題分析 107 5.3.1 探討Lift-off BiOx製程之可行性 107 5.3.2 探討利用BiOx作為MoOx阻隔層製程之可行性 109 5.4 利用電子摻雜層改善之CMOS反相器備製流程 111 5.5 利用電子摻雜層改善之CMOS反相器電性結果與分析 112 5.5.1 反相器中N/P電晶體轉移特性曲線分析 112 5.5.2 以電晶體輸出曲線擬合反相器電壓轉移特性分析 114 5.5.3 反相器雜訊邊界特性及分析 116 5.5.4 反相器電壓增益與功耗萃取分析 117 5.6 利用電子摻雜層改善之CMOS反相器問題與分析 120 5.7 Benchmark 121 第六章 結論與未來展望 124 文獻參考 126 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | MoOx摻雜 | zh_TW |
| dc.subject | 臨界電壓調控 | zh_TW |
| dc.subject | 等效氧化層厚度微縮 | zh_TW |
| dc.subject | 低功耗 | zh_TW |
| dc.subject | 高電壓增益 | zh_TW |
| dc.subject | 接觸工程 | zh_TW |
| dc.subject | 二硒化鎢 | zh_TW |
| dc.subject | 極性控制 | zh_TW |
| dc.subject | 雙極性電晶體 | zh_TW |
| dc.subject | 金屬氧化物半導體反相器 | zh_TW |
| dc.subject | 二維材料 | zh_TW |
| dc.subject | BiOx摻雜 | zh_TW |
| dc.subject | 同質整合 | zh_TW |
| dc.subject | Homogeneous Integration | en |
| dc.subject | WSe2 | en |
| dc.subject | 2D Materials | en |
| dc.subject | CMOS Inverter | en |
| dc.subject | Ambipolar Transistor | en |
| dc.subject | Polarity Control | en |
| dc.subject | BiOx Doping | en |
| dc.subject | MoOx Doping | en |
| dc.subject | Threshold Voltage Control | en |
| dc.subject | EOT Scaling | en |
| dc.subject | Low-Power Consumption | en |
| dc.subject | High Voltage Gain | en |
| dc.title | 極性控制之二維單層二硒化鎢電晶體整合的低功耗與高電壓增益金屬氧化物半導體反相器 | zh_TW |
| dc.title | Low-Power & High-Gain Homogeneous CMOS Inverter Based on Polarity-Controlled Monolayer WSe2 Transistors | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周昂昇;陳奕君;張子璿 | zh_TW |
| dc.contributor.oralexamcommittee | Ang-Sheng Chou;I-Chun Cheng;Tzu-Hsuan Chang | en |
| dc.subject.keyword | 二硒化鎢,二維材料,金屬氧化物半導體反相器,雙極性電晶體,極性控制,BiOx摻雜,MoOx摻雜,臨界電壓調控,等效氧化層厚度微縮,低功耗,高電壓增益,接觸工程,同質整合, | zh_TW |
| dc.subject.keyword | WSe2,2D Materials,CMOS Inverter,Ambipolar Transistor,Polarity Control,BiOx Doping,MoOx Doping,Threshold Voltage Control,EOT Scaling,Low-Power Consumption,High Voltage Gain,Homogeneous Integration, | en |
| dc.relation.page | 130 | - |
| dc.identifier.doi | 10.6342/NTU202503555 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 重點科技研究學院 | - |
| dc.contributor.author-dept | 元件材料與異質整合學位學程 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 元件材料與異質整合學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
