Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98666
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳泓熹zh_TW
dc.contributor.advisorSteven Hung-Hsi Wuen
dc.contributor.author澹思亭zh_TW
dc.contributor.authorSzu-Ting Tanen
dc.date.accessioned2025-08-18T01:16:41Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citationBeecher, G. R. (1998). Nutrient content of tomatoes and tomato products. Proceedings of the Society for Experimental Biology and Medicine, 218(2), 98-100.
Bhowmik, D., Kumar, K. S., Paswan, S., & Srivastava, S. (2012). Tomato-a natural medicine and its health benefits. Journal of Pharmacognosy and Phytochemistry, 1(1), 33-43.
Blum, A., Monir, M., Wirsansky, I., & Ben-Arzi, S. (2005). The beneficial effects of tomatoes. European Journal of Internal Medicine, 16(6), 402-404.
Bradshaw, J. E. (2017). Plant breeding: past, present and future. Euphytica, 213(3), 60.
Canene-Adams, K., Campbell, J. K., Zaripheh, S., Jeffery, E. H., & Erdman Jr, J. W. (2005). The tomato as a functional food. The Journal of nutrition, 135(5), 1226-1230.
Ceccarelli, S. (2015). Efficiency of plant breeding. Crop science, 55(1), 87-97.
Chojnacka, K. (2015). Innovative bio-products for agriculture. Open Chemistry, 13(1), 000010151520150111.
Collins, E. J., Bowyer, C., Tsouza, A., & Chopra, M. (2022). Tomatoes: An extensive review of the associated health impacts of tomatoes and factors that can affect their cultivation. Biology, 11(2), 239.
Daniel, A. I., Fadaka, A. O., Gokul, A., Bakare, O. O., Aina, O., Fisher, S., Burt, A. F., Mavumengwana, V., Keyster, M., & Klein, A. (2022). Biofertilizer: the future of food security and food safety. Microorganisms, 10(6), 1220.
Eilenberg, J., Hajek, A., & Lomer, C. (2001). Suggestions for unifying the terminology in biological control. BioControl, 46, 387-400.
Fischer, R., Stoger, E., Schillberg, S., Christou, P., & Twyman, R. M. (2004). Plant-based production of biopharmaceuticals. Current opinion in plant biology, 7(2), 152-158.
Forero, L. E., Grenzer, J., Heinze, J., Schittko, C., & Kulmatiski, A. (2019). Greenhouse-and field-measured plant-soil feedbacks are not correlated. Frontiers in Environmental Science, 7, 184.
Hannula, S. E., Di Lonardo, D. P., Christensen, B. T., Crotty, F. V., Elsen, A., van Erp, P. J., Hansen, E. M., Rubæk, G. H., Tits, M., & Toth, Z. (2021). Inconsistent effects of agricultural practices on soil fungal communities across 12 European long‐term experiments. European Journal of Soil Science, 72(4), 1902-1923.
Hassan, M. K., McInroy, J. A., & Kloepper, J. W. (2019). The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: a review. Agriculture, 9(7), 142.
Jindo, K., Olivares, F. L., Malcher, D. J. d. P., Sánchez-Monedero, M. A., Kempenaar, C., & Canellas, L. P. (2020). From lab to field: Role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Frontiers in plant science, 11, 426.
Ling, Q., Huang, W., & Jarvis, P. (2011). Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynthesis research, 107, 209-214.
Ma, Q., Wu, L., Wang, J., Ma, J., Zheng, N., Hill, P. W., Chadwick, D. R., & Jones, D. L. (2018). Fertilizer regime changes the competitive uptake of organic nitrogen by wheat and soil microorganisms: An in-situ uptake test using 13C, 15N labelling, and 13C-PLFA analysis. Soil Biology and Biochemistry, 125, 319-327.
Mitchell, J. F. (1989). The “greenhouse” effect and climate change. Reviews of Geophysics, 27(1), 115-139.
Papendick, R. I., Elliott, L. F., & Dahlgren, R. B. (1986). Environmental consequences of modern production agriculture: How can alternative agriculture address these issues and concerns? American Journal of Alternative Agriculture, 1(1), 3-10.
Rouphael, Y., & Colla, G. (2020). Biostimulants in agriculture. In (Vol. 11, pp. 40): Frontiers Media SA.
Schweitzer, J. A., Bailey, J. K., Fischer, D. G., LeRoy, C. J., Lonsdorf, E. V., Whitham, T. G., & Hart, S. C. (2008). Plant–soil–microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology, 89(3), 773-781.
Sumberg, J., & Giller, K. E. (2022). What is ‘conventional’agriculture? Global Food Security, 32, 100617.
Sumberg, J., & Reece, D. (2004). Agricultural research through a ‘new product development’lens. Experimental Agriculture, 40(3), 295-314.
Thomas, M., & Willis, A. (1998). Biocontrol—risky but necessary? Trends in Ecology & Evolution, 13(8), 325-329.
Trivedi, P., Batista, B. D., Bazany, K. E., & Singh, B. K. (2022). Plant–microbiome interactions under a changing world: responses, consequences and perspectives. New Phytologist, 234(6), 1951-1959.
Velten, S., Leventon, J., Jager, N., & Newig, J. (2015). What is sustainable agriculture? A systematic review. Sustainability, 7(6), 7833-7865.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., & Bright, J. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, 17(3), 261-272.
Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: a global perspective. Frontiers in plant science, 7, 2049.
Yuan, Z., Cao, Q., Zhang, K., Ata-Ul-Karim, S. T., Tian, Y., Zhu, Y., Cao, W., & Liu, X. (2016). Optimal leaf positions for SPAD meter measurement in rice. Frontiers in plant science, 7, 719.
Zeller, S. L., Kalinina, O., Brunner, S., Keller, B., & Schmid, B. (2010). Transgene× environment interactions in genetically modified wheat. PLoS One, 5(7), e11405.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98666-
dc.description.abstract全球人口持續增長與氣候變遷是當前農業發展所面臨的兩大挑戰。農業生物製劑因具有促進作物產量與維護環境永續的潛力,逐漸受到重視。此類產品多以天然來源為基礎,如微生物、植物萃取物或其他有機物質。然而,新型微生物製劑的開發需仰賴大量溫室與田間試驗,且作物、微生物與環境三者間的複雜交互作用,使得預測最終作物表現具高度不確定性。此外,開發階段早期的微生物製劑穩定性不足,常導致產量或其他性狀出現雙峰或多峰分布,進而降低統計檢定力與篩選具有潛力的處理之效能。本研究提出一套結合混合模型與最大概似估計法(MLE)的統計分析架構,用以處理具反應異質性的資料。模型中具有兩個成分,其一成分為對植物的生長具正向效果,另一成分則對植物的生長不具效果或具負向效果。本研究同時進行模擬實驗與實際資料驗證。模擬結果顯示,在參數 估計上,除誤差劇烈波動區外,平均絕對誤差(MAE)均低於 0.5,均方根誤差(rMSE)最低可達 0.434,相對誤差(MRE)最低為 0.087,顯示本方法具備良好預測效能。本方法能識別出在效果上略優於對照組的處理,並進一步設計雙標準決策機制,透過設定有正向效果之成分比例(0.3 至 0.6)及增長幅度是否排除 0,篩選具潛力之處理組。此機制可依使用者需求進行調整,條件可更嚴格或更寬鬆,以達到使用者的成本考量。與傳統統計方法如變異數分析(ANOVA)相比,本模型可額外發掘超過 20% 的潛在處理組,並提供更具使用者導向的選擇依據。此研究亦進行溫室試驗以驗證本模型在實際資料上的應用潛力,結果顯示本方法相較於 ANOVA 能偵測出更多具異質性反應的處理組。綜合而言,本研究並非意圖取代 ANOVA,而是提供一套可因應資料不一致性、並兼顧使用者偏好的替代性方法,協助研究者在面對生物產品表現不穩定時,有更好的決策依據。zh_TW
dc.description.abstractThe escalating global population and climate change are two major challenges facing humanity. Agricultural biologicals are regarded as potential solutions to increase crop yields while maintaining a sustainable environment. They are products created from natural materials, such as microorganisms, plant extracts, or other organic matter. The development of new microbial products requires extensive testing in greenhouse experiments and field trials. However, the complex three-way interactions between crops, living microorganisms, and environments make it difficult to predict the final responses. In addition, in the early stages of the development process, microbial treatments are often unstable, resulting in bimodal or multimodal distributions in the responses of interest. Hence, this reduces statistical power for discovering potential products. We developed a statistical framework using a mixture model and maximum likelihood estimator (MLE) to analyze data with heterogeneous responses. The model takes into account the fact that not all microbial treatments are equally effective; some are active microbes with a positive effect, while others are inactive microbes with no or deleterious effects. In this study, we conducted both in silico simulations and real-world validation. Results show that our model's performance among parameters in mean absolute error (MAE) does not exceed 0.5, except in the fluctuating error area. Results from the root mean square error (RMSE) and mean relative error (MRE) show that the lowest values reach 0.434 and 0.087, respectively. These results prove the effectiveness of our model. This new methodology enables us to identify microbial treatments that slightly outperform the control. We also provide a dual-criteria decision-making method to select favorable treatments by setting thresholds for component probability from 0.3 to 0.6 and determining whether the shifting parameter excludes 0 or not. The advantage of our model is that these criteria can be customized to be more strict or more lenient to meet users' cost restrictions. Compared to traditional statistical methods such as ANOVA, the new method can identify an additional 20% of potential treatments and allows users to customize their own preferences. In the real greenhouse experiment, we validated that our approach extends beyond simulated data to include real-world applications. Results show that our model provides more heterogeneous response treatment candidates than ANOVA. In conclusion, we are not claiming to provide a better method than ANOVA, but rather offering an alternative method that allows users to decide their own preferences and helps them make decisions when faced with inconsistent results from biological products.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:16:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:16:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACKNOWLEDGEMENT ii
摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Global Issues 1
1.2 Agricultural Biological Products 2
1.2.1 Inconsistency and Instability 3
1.2.2 Large-scale Product Screening 4
1.3 Mixture Model and Maximum Likelihood Estimation 5
1.3.1 Mixture Model 5
1.3.2 Maximum Likelihood Estimation 5
1.4 Plant Physiology Measurement 6
1.4.1 Importance of Tomatoes 6
1.4.2 Chlorophyll Meter Technology 7
1.5 Aims of the Study 7
Chapter 2 Materials and Methods 11
2.1 Structure Concept of Mixture Model 11
2.1.1 Mixture Model with Two Components 12
2.1.2 Multiple Treatments in a Model 13
2.1.3 Maximum Likelihood Framework 13
2.1.4 Parameter Boundary Settings 15
2.1.5 Model Implementation with Penalty 17
2.2 Simulation Study 17
2.2.1 Simulation of Data for a Single Treatment 18
2.2.2 Number of Treatments and Replicates 18
2.2.3 Categories of Simulation Parameter Settings 19
2.2.4 Datasets Estimation and Analysis 22
2.3 Sample Generating and Model Fitting 22
2.3.1 Estimation Process and Workflow 23
2.4 Validation 24
2.4.1 Model Validation Metrics 24
2.4.2 Decision Making 25
2.4.3 Real World Validation 27
2.4.4 Data Collection Protocol 35
Chapter 3 Results 36
3.1 Simulations 36
3.1.1 Model Selection and Penalty Term Implementation 36
3.1.2 Density Plot from Grid Search with Static Parameters 38
3.1.3 Model Evaluation 45
3.1.4 Double Decision Criteria Based on Confidence Interval 51
3.1.5 Promising Rate 56
3.1.6 Real World Data Visualization 59
3.1.7 Model Fitting and ANOVA 64
Chapter 4 Discussion 68
4.1 Model Evaluation and Decision Making 68
4.1.1 Model Preference 68
4.1.2 Model Performance 68
4.1.3 Alternative and Application of Double Decision Criteria 69
4.2 Real World Data 70
4.2.1 NA Values 71
Chapter 5 Conclusion 72
5.1 Future Work 73
Reference 75
Appendices 77
-
dc.language.isoen-
dc.subject農業生物製劑zh_TW
dc.subject混合模型zh_TW
dc.subject最大概似估計法zh_TW
dc.subject異質性反應zh_TW
dc.subject處理探索zh_TW
dc.subjectmixture modelen
dc.subjectAgricultural biological productsen
dc.subjecttreatment discoveryen
dc.subjectheterogeneous responsesen
dc.subjectmaximum likelihood estimatoren
dc.title應用混合模型於資料效果異質性之辨識: 以肥料處理篩選場景為例zh_TW
dc.titleApplication of Mixture Models for Identifying Treatment Effect Heterogeneity: A Case Study Using Fertilizer Treatments to Simulate Screening Scenariosen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莊汶博;林宗俊;蔡欣甫zh_TW
dc.contributor.oralexamcommitteeWen-Pp Chuang;Tsung-Chun Lin;Shin-Fu Tsaien
dc.subject.keyword農業生物製劑,混合模型,最大概似估計法,異質性反應,處理探索,zh_TW
dc.subject.keywordAgricultural biological products,mixture model,maximum likelihood estimator,heterogeneous responses,treatment discovery,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202503698-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2030-08-04-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
24.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved