Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98665
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李勇毅zh_TW
dc.contributor.advisorYung-I Leeen
dc.contributor.author徐菡憶zh_TW
dc.contributor.authorHan-I Hsuen
dc.date.accessioned2025-08-18T01:16:29Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation徐善德. 2007. 蝴蝶蘭癒合組織再生植株與轉殖體系之建立. 國立臺灣大學生物資源暨農學院園藝學系博士論文.
徐善德、黃鵬林. 2007. 葡萄糖苷酸酶活性組織化學染色法分析蝴蝶蘭轉殖事件之改進. 臺灣園藝53:301-312.
Arditti J. 1992. Fundamentals of orchid biology. John Wiley & Sons, Ltd, New York.
Arditti J, Ghani AKA. 2000. Numerical and physical properties of orchid seeds and their biological implications. New Phytologist 145:367-421.
Bassuner BM, Lam R, Lukowitz W, Yeung EC. 2007. Auxin and root initiation in somatic embryos of Arabidopsis. Plant Cell Reports 26:1-11.
Chao YT, Chen WC, Chen CY, Ho HY, Yeh CH, Kuo YT, Su CL et al. 2018. Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnology Journal 16: 2027-2041.
Chen D, Ren Y, Deng Y, Zhao J. 2010. Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PM H+-ATPase activities. Journal of Experimental Botany 61:1853-67.
Chen K, Wang H, Chen Y, Fu K, Han Z, Li C, Si J, Chen D. 2023. Functional analysis of WOX family genes in Dendrobium catenatum during growth and development. Hereditas 45:700-714.
Dressler RL. 1993. Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge.
Evert RF, Eichhorn SE. 2013. Raven Biology of Plants, 8th Edn. W.H. Freeman/Palgrave Macmillan.
Friml J, Palme K. 2002. Polar auxin transport-old questions and new concepts? Plant Molecular Biology 49:273-284.
Guan L, Tayengwa R, Cheng Z,Peer WA, Murphy AS, Zhao M. 2019. Auxin regulates adventitious root formation in tomato cuttings. BMC Plant Biology 19:435.
Gross-Hardt R, Lenhard M, Laux T. 2002. WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes & Development 16:1129-1138.
Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T. 2004. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657-68.
Ho BL, Chen JC, Huang TP, Fang SC. 2022. Protocorm-like-body extract of Phalaenopsis aphrodite combats watermelon fruit blotch disease. Frontiers in Plant Science 13:1054586.
Hsing HX, Lin YJ, Tong CG, Li MJ, Chen YJ, Ko SS. 2016. Efficient and heritable transformation of Phalaenopsis orchids. Botanical Studies 57:30.
Hu Q, Dong J, Ying J, Wang Y, Xu L, Ma Y et al. 2024. Functional analysis of RsWUSb with Agrobacterium-mediated in planta transformation in radish (Raphanus sativus L.). Scientia Horticulturae 323:112504.
Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ. 2010. WOX4 promotes procambial development. Plant Physiology 152:1346-1356.
Kanchan M, Sembi JK. 2020. Comparative transcriptomic analyses of four Phalaenopsis species to identify and characterize the WUSCHEL-related homeobox (WOX) gene family. BioTechnologia 101:309-322.
Kano K. 1965. Studies on the media for orchid seed germination. Memoirs of the Faculty of Agriculture Kagawa University 20:1-79.
Laux T, Mayer KF, Berger J, Jürgens G. 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87-96.
Lee YI, Yeung EC, Lee N, Chung MC. 2008. Embryology of Phalaenopsis amabilis var. formosa: embryo development. Botanical Studies 49:139-146.
Liao CY, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D. 2015. Reporters for sensitive and quantitative measurement of auxin response. Nature Methods 12:207-210.
Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H, Xu L. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26:1081-1093.
Ludwig-Müller J, Vertocnik A, Town CD. 2005. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. Journal of Experimental Botany 56:2095-2105.
Mishiba K, Chin DP, Mii M. 2005. Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Plant Cell Reports 24:297-303.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum 15:473-497.
Novak SD, Whitehouse GA. 2013. Auxin regulates first leaf development and promotes the formation of protocorm trichomes and rhizome-like structures in developing seedlings of Spathoglottis plicata (Orchidaceae). AoB Plants 5:pls053.
Posit Team. 2025. RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, Massachusetts.
Rasmussen HN. 1995. Terrestrial orchids-from seed to mycotrophic plant. Cambridge University Press, Cambridge.
Ruzin SE. 1999. Plant microtechnique and microscopy. Oxford Universivty Pree, Inc., New York.
Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T. 2007. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811-814.
Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T. 2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635-644.
Shi J, Dong J, Xue J, Wang H, Yang Z, Jiao Y, Xu L, Huang H. 2017. Model for the role of auxin polar transport in patterning of the leaf adaxial-abaxial axis. Plant Journal 92:469-480.
Steeves TA, Sussex IM. 1989. Patterns in plant development, 2nd edn. Cambridge & New York: Cambridge University Press.
Su CL, Chao YT, Yen SH, Chen CY, Chen WC, Chang YC, Shih MC. 2013. Orchidstra: an integrated orchid functional genomics database. Plant and Cell Physiology 54:e11.
Taiz L, Zeiger E. 2010. Plant Physiology, 5th Edn. Sunderland, MA: Sinauer Association.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38:3022-3027.
Tian H, Wabnik K, Niu T, Li H, Yu Q, Pollmann S, Vanneste S, Govaerts W et al. 2014. WOX5-IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis. Molecular Plant 7:277-289.
van der Graaff E, Laux T, Rensing SA. 2009. The WUS homeobox-containing (WOX) protein family. Genome Biology 10:248.
Ulmasov T, Hagen G, Guilfoyle TJ. 1999. Activation and repression of transcription by auxin-response factors. Proceedings of the National Academy of Sciences of the United States of America 96:5844-5849.
Vanneste S, Friml J. 2009. Auxin: a trigger for change in plant development. Cell 136: 1005-1016.
Vernoux T, Besnard F, Traas J. 2010. Auxin at the shoot apical meristem. Cold Spring Harbor Perspectives in Biology 2:a001487.
Vij SP, Sharma M. 1986. Embryo sac development in Orchidaceae. In SP Vij (ed.) Biology, conservation, and culture of orchids. East-West Press, New Delhi, pp. 31-48.
Vinogradova TN, Andronova EV. 2002. Development of orchid seeds and seedlings. In Orchid biology: reviews and perspectives, VIII. Edited by T. Kull and J. Arditti. Kluwer Academic Publishers, Dordrecht. pp. 167-234.
Wirth M, Withner CL. 1959. Embryology and development in the Orchidaceae. In CL Withner (ed.) The Orchids: A Scientific Survey. Ronald Press, New York, pp. 155-188.
Wu X, Dabi T, Weigel D. 2005. Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Current Biology 15:436-40.
Yam TW, Yeung EC, Ye XL, Zee SY, Arditti J. 2002. Orchid embryos, p287-385. In: Kull T, Arditti J (eds). Orchid biology: reviews and persectives. 8th edn. Kluwer, Dordrecht.
Yeung EC. 1984. Histological and histochemical staining procedures, p689-697. In: Vasil IK (ed). Cell culture and somatic cell genetics of plants. Academic Press, Orlando.
Yeung EC, Law SK. 1997. Ovule development, p.31-73. In Orchid biology: reviews and perspectives VII. Arditti J, Pridgeon AM (eds). Kluwer, Dordrecht.
Yeung EC. 2017. A perspective on orchid seed and protocorm development. Botanical Studies 58:33.
Yeung EC. 2022. The orchid embryo-“An embryonic protocorm”. Botany 100:691-706.
Yeung EC, Chan CKW. 2015. The glycol methacrylate embedding resins-Technovit 7100 and 8100. Plant microtechniques and protocols. Springer International Publishing, pp 67-82.
Yeung EC, Li YY, Lee YI. 2018. Understanding seed and protocorm development in orchids. In: Lee YI, Yeung EC (eds) Orchid propagation: from laboratory to greenhouses-methods and protocols. Springer Protocols and Handbooks, Humana Press, New York, pp 3-26.
Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW et al. 2016. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports 6:19029.
Zhang XS, O’Neill SD. 1993. Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell 5:403-418.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98665-
dc.description.abstract蝴蝶蘭(Phalaenopsis)的種子在成熟時缺乏頂端分生組織,於種子萌芽後才逐步發育出頂端分生組織以及葉片與根系。此發育模式有別於大多數被子植物於胚胎早期即完成分生組織定位。為探討此特殊時序下頂端分生組織建立的分子調控機制,本研究分析WUSCHEL-related homeobox(WOX)家族與生長素訊號在蝴蝶蘭種子及原球莖發育階段中的表現與分布。首先,根據胚珠與原球莖的形態特徵與組織學觀察來定義不同發育階段,並透過quantitative real-time PCR與轉基因報導植株(DR5::GUS)進行WOX基因與生長素的不同發育階段表現分析。結果顯示,PaWUS以及PaWOX3a、PaWOX4、PaWOX5、PaWOX9等基因於胚珠發育期間表現量顯著上升,顯示其可能參與組織分化與分生組織形成之調控。在原球莖發育期間,PaWOX3a、PaWOX4 與 PaWOX5 於頂端區域有較高的表現,推測其可能參與頂端分生細胞群的建立。DR5::GUS染色亦顯示生長素在原球莖內呈現極性分佈,並於葉原基與根原基高度累積,顯示生長素在器官發育中所扮演的角色。外施 IAA 與 NAA實驗顯示生長素可促進原球莖生長與不定根形成,反之TIBA處理則導致莖頂、葉片與根部發育異常。此外本研究亦成功建立 WOX 啟動子::GUS 之轉基因構築並初步應用於蝴蝶蘭轉殖。整體而言,本論文研究探討WOX家族與生長素在蝴蝶蘭發育過程中的表現,為進一步研究蘭科植物特殊的發育模式提供重要的基礎資料。zh_TW
dc.description.abstractUnlike most angiosperms, which complete meristem specification during early embryogenesis, Phalaenopsis lacks an apical meristem at seed maturity and gradually establishes meristems and organs only after germination. To explore the molecular regulation of apical meristem formation in orchids, this study examined the expression patterns of WUSCHEL-related homeobox (WOX) genes and auxin accumulation during seed and protocorm development in Phalaenopsis. Different developmental stages of ovules and protocorms were defined based on their morphological and histological characteristics. Expression patterns of WOX genes and auxin accumulation were analyzed using quantitative real-time PCR and transgenic reporter plants (DR5::GUS). The expression of PaWUS, PaWOX3a, PaWOX4, PaWOX5, and PaWOX9 significantly increased during ovule development, suggesting roles in tissue differentiation and meristem formation. During protocorm development, PaWOX3a, PaWOX4, and PaWOX5 were highly expressed in the apical region, implying involvement in maintaining undifferentiated apical cells. DR5::GUS staining revealed polarized auxin distribution with accumulation in leaf and root primordia, supporting its role in organ differentiation. IAA and NAA promoted growth and adventitious root formation, while TIBA caused developmental abnormalities. WOX promoter::GUS constructs were also successfully established and preliminarily applied in Phalaenopsis transformation. Together, these results advance our understanding of the molecular regulation underlying apical meristem formation in orchids.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:16:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:16:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF TABLES ix
LIST OF FIGURES x
LIST OF SUPPLEMENTAL FIGURES xii
Chapter 1 Introduction 1
1.1 Apical meristems and their functions in plant growth 1
1.2 WUSCHEL-RELATED HOMEOBOX (WOX) family 1
1.3 Regulation of WOX gene expression by auxin 2
1.4 A brief introduction to Orchidaceae 3
1.5 Development of embryos and protocorms in orchids 4
1.6 Aims of this study 5
Chapter 2 Materials and Methods 7
2.1 Plant materials 7
2.2 Seed germination and seedling cultures 7
2.3 Morphological and histological studies 8
2.4 Identification of WOX genes and phylogenetic analysis 9
2.5 Quantitative real-time PCR (qRT-PCR) experiments 9
2.5.1 Plant sample preparation for gene expression analysis 9
2.5.2 RNA extraction and reverse transcription 10
2.5.3 Primer design and cDNA concentration determination 10
2.5.4 Primer efficiency validation 11
2.5.5 qRT-PCR procedure 12
2.6 Cloning of promoters from Phalaenopsis WOX genes 12
2.6.1 Genomic DNA extraction 12
2.6.2 Promoter isolation and plasmid construction 13
2.7 Preparation of Agrobacterium competent cells and transformation by freeze-thaw method 13
2.8 DR5::GUS construct and transformation 14
2.9 Antibiotic sensitivity test 15
2.10 Agrobacterium-mediated transformation 15
2.11 Evaluation of DR5::GUS activity during Phalaenopsis ontogeny 16
2.12 Histochemical staining for GUS activity 16
2.13 Vibratome Sectioning 17
2.14 Effect of auxin on protocorm development 17
2.15 Effect of auxin on adventitious root formation in stem cuttings 18
2.16 Graphical visualization and statistical analysis 18
Chapter 3 Results 20
3.1 Ovule and embryo development in Phalaenopsis. 20
3.2 Morphological changes during protocorm development 20
3.3 Histological changes during protocorm development. 21
3.4 Phylogenetic analysis of WOX family proteins in Phalaenopsis 22
3.5 Relative expression levels of WOX genes during ovule and embryo development 22
3.6 Relative expression levels of WOX genes during protocorm development 23
3.7 Transformation experiments 24
3.8 Antibiotic sensitivity test 25
3.9 Optimization of post-transformation culture conditions 25
3.10 Confirmation of transgenic orchids via PCR and GUS staining. 26
3.11 Evaluation of DR5::GUS activity during Phalaenopsis ontogeny 27
3.11.1 Establishment of DR5::GUS transgenic lines 27
3.11.2 Analysis of DR5::GUS expression during Phalaenopsis development 28
3.11.3 GUS staining of vibratome sections reveals SAM and RAM formation 29
3.12 Effects of auxins on the growth and development of Phalaenopsis protocorms 31
3.12.1 Growth responses of 18 DAS protocorms to auxin and TIBA 32
3.12.2 Growth responses of 55 DAS protocorms to auxin and TIBA 33
3.12.3 TIBA disrupts auxin distribution and induces abnormal leaf morphologies in Phalaenopsis protocorms 34
3.13 Adventitious rooting of Phalaenopsis stem cuttings under NAA and TIBA treatments 35
3.14 Auxin accumulation patterns during adventitious root formation in Phalaenopsis stem cuttings 36
Chapter 4 Discussion 37
4.1 Expression profiles of WOX genes during embryogenesis and protocorm development in Phalaenopsis 37
4.2 Dynamics of auxin accumulation during protocorm development 39
4.3 Effect of auxin on protocorm development and adventitious root formation 41
4.4 Challenges of genetic transformation in orchids 43
Chapter 5 Conclusion 44
Reference 45
Table 51
Figure 53
Supplemental figure 83
-
dc.language.isoen-
dc.subject蝴蝶蘭zh_TW
dc.subjectWOX 基因zh_TW
dc.subject生長素zh_TW
dc.subject分生組織zh_TW
dc.subject原球莖zh_TW
dc.subject轉基因系統zh_TW
dc.subjectauxinen
dc.subjectPhalaenopsisen
dc.subjectWOX genesen
dc.subjecttransgenic systemen
dc.subjectprotocormen
dc.subjectmeristemen
dc.titleWOX基因家族與生長素在蝴蝶蘭種子及原球莖發育時的表現zh_TW
dc.titleExpression of WOX Gene Family and Auxin During Seed and Protocorm Development in Phalaenopsisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee呂維茗;傅士峯zh_TW
dc.contributor.oralexamcommitteeWei- Ming Leu;Shih-Feng Fuen
dc.subject.keyword蝴蝶蘭,WOX 基因,生長素,分生組織,原球莖,轉基因系統,zh_TW
dc.subject.keywordPhalaenopsis,WOX genes,auxin,meristem,protocorm,transgenic system,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202504132-
dc.rights.note未授權-
dc.date.accepted2025-08-12-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
dc.date.embargo-liftN/A-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved