請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98642完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖文正 | zh_TW |
| dc.contributor.advisor | Wen-Cheng Liao | en |
| dc.contributor.author | 許淳瑋 | zh_TW |
| dc.contributor.author | Chun-Wei Hsu | en |
| dc.date.accessioned | 2025-08-18T01:11:20Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | [1]"能源轉型強化穩定供電之策略研析," 2022.
[1]"能源轉型強化穩定供電之策略研析," 2022. [2]"前瞻基礎建設計畫-綠能建設區域性儲能設備技術示範驗證計畫," 2017. [3]C.-F. Tsai, "Feasibility Study on the Development of Cement-based Battery and Capacitor Energy Storage Devices," 2024, doi: 10.6342/NTU202403439. [4]N. S. Piro, A. S. Mohammed, S. M. Hamad, and R. Kurda, "Electrical conductivity, microstructures, chemical compositions, and systematic multivariable models to evaluate the effect of waste slag smelting (pyrometallurgical) on the compressive strength of concrete," Environ Sci Pollut Res Int, vol. 29, no. 45, pp. 68488-68521, Sep 2022, doi: 10.1007/s11356-022-20518-1. [5]W. J. McCarter, G. Starrs, and T. M. Chrisp, "Electrical conductivity, diffusion, and permeability of Portland cement-based mortars," Cement and Concrete Research, vol. 30, no. 9, pp. 1395-1400, 2000. [6]H. Layssi, P. Ghods, A. R. Alizadeh, and M. Salehi, "Electrical resistivity of concrete," Concrete international, vol. 37, no. 5, pp. 41-46, 2015. [7]J.-B. Donnet, Carbon black: science and technology. CRC Press, 1993. [8]M.-J. Wang, "Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates," Rubber Chemistry and Technology, vol. 71, no. 3, pp. 520-589, 1998, doi: 10.5254/1.3538492. [9]R. S.-P, K. F.-H, and C. K.-C, "Dispersion of carbon black in a continuous phase: Electrical, rheological, and morphological studies," Colloid & Polymer Science, vol. 280, no. 12, pp. 1110-1115, 2002, doi: 10.1007/s00396-002-0718-8. [10]E. Dames, V. Rohani, and L. Fulcheri, "Plasma chemistry and plasma reactors for turquoise hydrogen and carbon nanomaterials production," in Turquoise Hydrogen, (Advances in Chemical Engineering, 2023, pp. 253-317. [11]A. Abolhasani, A. Pachenari, S. Mohammad Razavian, and M. Mahdi Abolhasani, "Towards new generation of electrode-free conductive cement composites utilizing nano carbon black," Construction and Building Materials, vol. 323, 2022, doi: 10.1016/j.conbuildmat.2022.126576. [12]H. Li, H. G. Xiao, and J. P. Ou, "Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites," (in English), Cement Concrete Comp, vol. 28, no. 9, pp. 824-828, Oct 2006, doi:10.1016/j.cemconcomp.2006.05.004. [13]G. H. Nalon et al., "Effects of different kinds of carbon black nanoparticles on the piezoresistive and mechanical properties of cement-based composites," Journal of Building Engineering, vol. 32, 2020, doi: 10.1016/j.jobe.2020.101724. [14]Q. Zhang, C. Luan, C. Yu, Y. Huang, and Z. Zhou, "Mechanisms of carbon black in multifunctional cement matrix: Hydration and microstructure perspectives," Construction and Building Materials, vol. 346, 2022, doi: 10.1016/j.conbuildmat.2022.128455. [15]J. S. Taurozzi, V. A. Hackley, and M. R. Wiesner, "Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment--issues and recommendations," Nanotoxicology, vol. 5, no. 4, pp. 711-29, Dec 2011, doi: 10.3109/17435390.2010.528846. [16]H. Kato, A. Nakamura, and M. Shimizu, "Effect of surfactant micelle size on the dispersibility of aqueous carbon black particle suspensions prepared by ultrasonication," (in English), Powder Technology, vol. 399, Feb 2022, doi: ARTN 11720610.1016/j.powtec.2022.117206. [17]A. Ehsani, E. Ganjian, O. Haas, M. Tyrer, and T. J. Mason, "The positive effects of power ultrasound on Portland cement pastes and mortars; a study of chemical shrinkage and mechanical performance," Cement and Concrete Composites, vol.137, 2023, doi: 10.1016/j.cemconcomp.2023.104935. [18]R. Kötz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica acta, vol. 45, no. 15-16, pp. 2483-2498, 2000. [19]J. Zhang, J. Xu, and D. Zhang, "A Structural Supercapacitor Based on Graphene and Hardened Cement Paste," Journal of The Electrochemical Society, vol. 163, no. 3, pp. E83-E87, 2015, doi: 10.1149/2.0801603jes. [20]N. Chanut et al., "Carbon-cement supercapacitors as a scalable bulk energy storage solution," Proc Natl Acad Sci U S A, vol. 120, no. 32, p. e2304318120, Aug 8 2023, doi: 10.1073/pnas.2304318120. [21]L. Fan, R. Ma, Q. Zhang, X. Jia, and B. Lu, "Graphite anode for a potassium‐ion battery with unprecedented performance," Angewandte Chemie, vol. 131, no. 31, pp. 10610-10615, 2019. [22]魏小胜, 肖莲珍, 李宗津, and 隋同波, "钢纤维水泥基材料的导电机理和水化特性," 混凝土, vol. 4, pp. 11-13, 2006. [23]C. Xu and D. Zhang, "Multifunctional structural supercapacitor based on cement/PVA-KOH composite and graphene," Journal of Composite Materials, vol. 55, no. 10, pp. 1359-1369, 2020, doi: 10.1177/0021998320969852. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98642 | - |
| dc.description.abstract | 隨著能源轉型與碳中和目標推進,兼具結構承載與儲能功能的多功能建材成為重要研究方向。傳統水泥基材料雖具備良好力學性能,但電化學性能有限,需透過導電填料與功能性添加物提升其儲能潛力。然而,碳黑分散方式、添加比例與水灰比對導電閾值行為及電容性能的影響仍缺乏系統性分析。
本研究旨在建立水泥基電容材料的製程與性能關聯,並提出適用於結構型儲能應用的設計策略。研究分為四個階段:比較不同碳黑分散方式對導電性影響、探討碳黑添加量與水灰比對導電閾值行為的關係、評估MnO₂偽電容效應,以及分析PVA-KOH凝膠系統在不同碳黑含量下的導電與儲能表現。 實驗採用循環伏安法(CV)、電化學阻抗頻譜(EIS)等技術,結合拌合方式與養護條件控制,以解析電子與離子傳輸機制。結果顯示,超音波分散能有效改善導電性,水灰比與養護濃度影響導電閾值穩定性;MnO₂未顯著提升初始電容;PVA-KOH凝膠可改善界面電導但仍受碳黑網絡連續性限制。 綜合分析,本研究提出影響水泥基電容性能的關鍵因子與初步最佳化組成策略,為結構型超級電容器的設計與應用提供參考。 | zh_TW |
| dc.description.abstract | With the advancement of energy transition and carbon neutrality goals, multifunctional building materials that integrate structural load-bearing capacity and energy storage capability have attracted increasing attention. Traditional cement-based materials possess excellent mechanical properties but limited electrochemical performance, requiring conductive fillers and functional additives to enhance their energy storage potential. However, the effects of carbon black dispersion methods, dosage, and water-to-cement ratio on percolation behavior and capacitance remain insufficiently understood.
This study aims to establish the relationship between processing parameters and electrochemical performance of cement-based capacitive materials and propose design strategies for structural energy storage applications. The research was divided into four stages: comparing different carbon black dispersion methods on electrical conductivity, investigating the influence of carbon black dosage and water-to-cement ratio on percolation behavior, evaluating the pseudocapacitive effect of MnO₂, and analyzing the conductivity and energy storage performance of PVA-KOH gel systems with various carbon black contents. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed, combined with controlled mixing procedures and curing conditions, to analyze electron and ion transport mechanisms. The results indicate that ultrasonic dispersion significantly improves conductivity, while water-to-cement ratio and curing concentration affect the stability of the percolation threshold. MnO₂ did not show a significant enhancement in initial capacitance, whereas PVA-KOH gel improved interfacial conductivity but remained limited by the continuity of the carbon black network. Overall, this study identifies key factors influencing the electrochemical performance of cement-based capacitive materials and proposes preliminary optimization strategies, providing a reference for the design and application of structural supercapacitors. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:11:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:11:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III ABSTRACT IV 目次 VI 圖次 XI 表次 XVIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究範圍與內容 2 1.3 研究流程 2 第二章 文獻回顧 4 2.1 水泥基材料電學性質 4 2.1.1 水泥基材料的導電基理 4 2.1.2 水泥基材料之電阻率測量方法 6 2.2 組成材料 9 2.2.1 碳黑 9 2.2.1.1 概述 9 2.2.1.2 碳黑含量對水泥基材料電阻率之影響 10 2.2.1.3 碳黑形狀對水泥基材料電阻率之影響 13 2.2.1.4 碳黑對水泥基材料工作性之影響 14 2.2.2 Triton X-100 16 2.2.2.1 概述 16 2.2.2.2 分散機理 16 2.3 超音波分散技術 17 2.3.1 超音波分散原理與應用背景 17 2.3.2 超音波與Triton X-100於碳黑分散之應用 18 2.3.3 超音波對水泥孔隙結構的影響 20 2.4 超級電容 22 2.4.1 基本原理簡介 22 2.4.2 雙電層電容(Electric Double Layer Capacitors, EDLC) 22 2.4.3 偽電容(Pseudocapacitors, PC) 23 2.4.4 水泥基電容 25 第三章 實驗計畫 39 3.1 碳黑導電性水泥基電極之電化學性能分析 39 3.1.1 實驗內容 39 3.1.2 實驗材料 40 3.1.3 實驗儀器設備 46 3.1.4 實驗設計 47 3.1.4.1 碳黑分散的比較 47 3.1.4.2 碳黑導電閾值分析 48 3.1.4.3 最佳配比條件下之不同導電碳黑性能比較 50 3.1.4.4 MnO2偽電容強化 50 3.1.4.5 PVA-KOH結構電解質設計 51 3.1.4.6 拌合階段導入 KOH 溶液之操作性評估 53 3.1.4.7 試體製作 53 3.1.5 電化學阻抗譜EIS 55 3.1.5.1 實驗原理 55 3.1.5.2 實驗設定 59 3.1.6 循環伏安法 61 3.1.6.1 實驗原理 61 3.1.6.2 實驗設定 62 第四章 實驗結果 64 4.1 不同分散方式之導電與儲能性能比較 64 4.1.1 分散方式對漿體外觀與工作性之影響 64 4.1.2 導電性與儲能性能分析 66 4.2 碳黑導電閾值行為 69 4.2.1 不同碳黑添加量下之導電閾值行為 69 4.2.2 不同 KOH 濃度下之導電閾值行為 76 4.2.3 不同水灰比對導電閾值行為之影響 82 4.3 最佳配比條件下之不同導電碳黑性能比較 92 4.4 MnO2添加效應 93 4.5 PVA-KOH凝膠系統之導電與儲能表現 94 4.6 拌合階段導入 KOH 溶液之分析 95 第五章 分析與討論 98 5.1 不同分散方式對導電網絡與儲能性能之影響 98 5.1.1 分散方式對漿體外觀與工作性之影響 98 5.1.2 導電性與儲能性能分析 98 5.1.3 綜合結果 99 5.1.4 導電網絡形成機理與臨界行為解釋 100 5.1.4.1 綜合結果 103 5.1.5 KOH濃度對閾值穩定性的影響 104 5.1.5.1 綜合結果 105 5.1.6 水灰比對閾值穩定性的影響 106 5.1.6.1 綜合結果 108 5.2 不同導電碳黑微觀結構對性能差異之影響討論 109 5.2.1 碳黑結構性與比表面積對性能的影響 109 5.2.2 EIS補充說明 110 5.2.3 綜合結果 110 5.3 MnO2添加效應討論 111 5.3.1 CV曲線形態:未顯示偽電容特徵 111 5.3.2 Bode plot頻率響應:未出現偽電容平台 112 5.3.3 Nyquist圖補充比較說明 113 5.3.4 綜合結果 114 5.4 PVA-KOH凝膠系統討論 114 5.4.1 與文獻結果比較 114 5.4.2 差異原因分析 115 5.4.3 綜合結果 116 5.5 拌合階段導入KOH溶液之討論 116 5.5.1 高鹼環境對早期水化反應的影響 117 5.5.2 EIS阻抗分析:界面阻抗上升 117 5.5.3 綜合結果 118 第六章 結論與建議 119 6.1 結論 119 6.2 建議 121 參考文獻 124 附錄A.不同分散之循環伏安圖和電容值回歸圖 127 附錄B.水泥基電容試驗之循環伏安圖 128 附錄C.水泥基電容試驗之電容值回歸圖 147 附錄D.添加MnO2之水泥基電容循環伏安圖和電容值回歸圖 166 附錄E.添加碳黑之PVA-KOH水泥基電容之循環伏安圖和電容值回歸圖 168 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 導電水泥基材料 | zh_TW |
| dc.subject | 超級電容 | zh_TW |
| dc.subject | 碳黑分散 | zh_TW |
| dc.subject | 導電閾值 | zh_TW |
| dc.subject | 二氧化錳 | zh_TW |
| dc.subject | PVA-KOH凝膠 | zh_TW |
| dc.subject | carbon black dispersion | en |
| dc.subject | Conductive cement-based materials | en |
| dc.subject | PVA-KOH gel | en |
| dc.subject | MnO₂ | en |
| dc.subject | percolation threshold | en |
| dc.subject | supercapacitor | en |
| dc.title | 開發用於儲能材料之碳黑導電性水泥基電極與其電化學特性分析 | zh_TW |
| dc.title | Development and Electrochemical Characterization of Carbon Black-Modified Cement-Based Electrodes for Energy Storage Application | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹穎雯;胡瑋秀;鄭如忠 | zh_TW |
| dc.contributor.oralexamcommittee | Yin-Wen Chan;Wei-Hsiu Hu;Ru-Jong Jeng | en |
| dc.subject.keyword | 導電水泥基材料,超級電容,碳黑分散,導電閾值,二氧化錳,PVA-KOH凝膠, | zh_TW |
| dc.subject.keyword | Conductive cement-based materials,supercapacitor,carbon black dispersion,percolation threshold,MnO₂,PVA-KOH gel, | en |
| dc.relation.page | 169 | - |
| dc.identifier.doi | 10.6342/NTU202503519 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 16.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
