Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98633
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李允中zh_TW
dc.contributor.advisorJonathan Leeen
dc.contributor.author鄭佳渝zh_TW
dc.contributor.authorChia-Yu Chengen
dc.date.accessioned2025-08-18T01:09:24Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citationA. Al-Hroob, A. T. Imam, and R. Al-Heisa. The use of artificial neural networks for extracting actions and actors from requirements document. Information and Software Technology, 101:1–15, 2018.
H. Alrumaih, A. Mirza, and H. Alsalamah. Domain ontology for requirements classification in requirements engineering context. IEEE Access, 8:89899–89908, 2020.
S. Azevedo, R. J. Machado, A. Bragança, and H. Ribeiro. The uml «include» relationship and the functional refinement of use cases. In 2010 36th EUROMICRO Conference on Software Engineering and Advanced Applications, pages 156–163. IEEE, 2010.
S. Baccianella, A. Esuli, F. Sebastiani, et al. Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In Lrec, volume 10, pages 2200–2204. Valletta, 2010.
S. Bird, E. Klein, and E. Loper. Natural language processing with Python: analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.
M. Bragilovski, A. T. Van Can, F. Dalpiaz, and A. Sturm. Deriving domain models from user stories: Human vs. machines. In 2024 IEEE 32nd International Requirements Engineering Conference (RE), pages 31–42. IEEE, 2024.
T. D. Breaux, A. I. Antón, and J. Doyle. Semantic parameterization: A process for modeling domain descriptions. 18(2), Nov. 2008.
R. J. Campello, D. Moulavi, A. Zimek, and J. Sander. Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 10(1):1–51, 2015.
C. Cheligeer, J. Huang, G. Wu, N. Bhuiyan, Y. Xu, and Y. Zeng. Machine learning in requirements elicitation: a literature review. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 36:e32, 2022.
H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani, S. Brahma, et al. Scaling instruction-finetuned language models. Journal of Machine Learning Research, 25(70):1–53, 2024.
L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-functional requirements in software engineering, volume 5. Springer Science & Business Media, 2012.
A. Cockburn and L. Cockburn. Writing effective use cases. Pearson Education India, 2008.
L. M. Cysneiros and J. C. S. do Prado Leite. Nonfunctional requirements: From elicitation to conceptual models. IEEE transactions on Software engineering, 30(5):328–350, 2004.
B. V. Dasarathy and B. V. Sheela. A composite classifier system design: Concepts and methodology. Proceedings of the IEEE, 67(5):708–713, 2005.
E. Dias Canedo and B. Cordeiro Mendes. Software requirements classification using machine learning algorithms. Entropy, 22(9):1057, 2020.
T. G. Dietterich. Ensemble methods in machine learning. In International workshop on multiple classifier systems, pages 1–15. Springer, 2000.
S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting empirical methods for software engineering research. Guide to advanced empirical software engineering, pages 285–311, 2008.
M. S. Feather, S. Fickas, A. Finkelstein, and A. Van Lamsweerde. Requirements and specification exemplars. Automated Software Engineering, 4:419–438, 1997.
M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. Liu, M. Peters, M. Schmitz, and L. Zettlemoyer. Allennlp: A deep semantic natural language processing platform. arXiv preprint arXiv:1803.07640, 2018.
M. Honnibal, I. Montani, S. Van Landeghem, A. Boyd, et al. spacy: Industrial-strength natural language processing in python. 2020.
S. T. Indra, L. Wikarsa, and R. Turang. Using logistic regression method to classify tweets into the selected topics. In 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pages 385–390, 2016.
T. Johann, C. Stanik, W. Maalej, et al. Safe: A simple approach for feature extraction from app descriptions and app reviews. In 2017 IEEE 25th international requirements engineering conference (RE), pages 21–30. IEEE, 2017.
U. Kamath, J. Liu, and J. Whitaker. Deep learning for NLP and speech recognition, volume 84. Springer, 2019.
A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes. Multinomial naive bayes for text categorization revisited. In Australasian joint conference on artificial intelligence, pages 488–499. Springer, 2004.
P. R. Kingsbury and M. Palmer. From treebank to propbank. In LREC, pages 1989–1993, 2002.
J. Kuchta and P. Padhiyar. Extracting concepts from the software requirements specification using natural language processing. In 2018 11th International Conference on Human System Interaction (HSI), pages 443–448. IEEE, 2018.
Z. Kurtanović and W. Maalej. Automatically classifying functional and non-functional requirements using supervised machine learning. In 2017 IEEE 25th International Requirements Engineering Conference (RE), pages 490–495, 2017.
M. A. Laguna, J. M. Marqués, and Y. Crespo. On the semantics of the extend relationship in use case models: open-closed principle or clairvoyance? In International Conference on Advanced Information Systems Engineering, pages 409–423. Springer, 2010.
J. Lee and J.-Y. Kuo. New approach to requirements trade-off analysis for complex systems. IEEE Transactions on Knowledge and Data Engineering, 10(4):551–562, 1998.
J. Lee and N.-L. Xue. Analyzing user requirements by use cases: A goal-driven approach. IEEE software, 16(4):92–101, 1999.
J. Lee, N.-L. Xue, and J.-Y. Kuo. Structuring requirement specifications with goals. Information and Software Technology, 43(2):121–135, 2001.
X. Li, J. Thickstun, I. Gulrajani, P. S. Liang, and T. B. Hashimoto. Diffusion-lm improves controllable text generation. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 4328–4343. Curran Associates, Inc., 2022.
M. Lima, V. Valle, E. Costa, F. Lira, and B. Gadelha. Software engineering repositories: expanding the promise database. In Proceedings of the XXXIII Brazilian Symposium on Software Engineering, pages 427–436, 2019.
C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky. The stanford corenlp natural language processing toolkit. In Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations, pages 55–60, 2014.
A. M. Mav and P. Wilkinson. Ten years of ears. IEEE Software, 36(5):10–14, 2019.
A. Mavin. Ears, 2019.
A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. Easy approach to requirements syntax (ears). In 2009 17th IEEE international requirements engineering conference, pages 317–322. IEEE, 2009.
A. Mavin, P. Wilksinson, S. Gregory, and E. Uusitalo. Listens learned (8 lessons learned applying ears). In 2016 IEEE 24th International Requirements Engineering Conference (RE), pages 276–282. IEEE, 2016.
G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41, 1995.
N. Mostafazadeh, N. Chambers, X. He, D. Parikh, D. Batra, L. Vanderwende, P. Kohli, and J. Allen. A corpus and cloze evaluation for deeper understanding of commonsense stories. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 839–849, 2016.
T. H. Nguyen, J. Grundy, and M. Almorsy. Rule-based extraction of goal-use case models from text. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages 591–601, 2015.
N. R. C. of Italy. Natural language requirements dataset, 2018.
R. Prasad, N. Dinesh, A. Lee, E. Miltsakaki, L. Robaldo, A. Joshi, and B. Webber. The Penn Discourse TreeBank 2.0. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, and D. Tapias, editors, Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08), Marrakech, Morocco, May 2008. European Language Resources Association (ELRA).
G. Y. Quba, H. Al Qaisi, A. Althunibat, and S. AlZu'bi. Software requirements classification using machine learning algorithm's. In 2021 international conference on information technology (ICIT), pages 685–690. IEEE, 2021.
C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.
I. K. Raharjana, D. Siahaan, and C. Fatichah. User story extraction from online news for software requirements elicitation: A conceptual model. In 2019 16th international joint conference on computer science and software engineering (JCSSE), pages 342–347. IEEE, 2019.
P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987.
M. E. Salari, E. P. Enoiu, W. Afzal, and C. Seceleanu. An empirical investigation of requirements engineering and testing utilizing ears notation in plc programs. SN Computer Science, 6(4):314, 2025.
V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.
K. K. Schuler. VerbNet: A broad-coverage, comprehensive verb lexicon. PhD thesis, University of Pennsylvania, 2005.
A. Schulz, P. Ristoski, and H. Paulheim. I see a car crash: Real-time detection of small scale incidents in microblogs. In The Semantic Web: ESWC 2013 Satellite Events: ESWC 2013 Satellite Events, Montpellier, France, May 26-30, 2013, Revised Selected Papers 10, pages 22–33. Springer, 2013.
R. Speer, J. Chin, and C. Havasi. Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.
L. Tan. Pywsd: Python implementations of word sense disambiguation (wsd) technologies [software]. https://github.com/alvations/pywsd, 2014.
S. Tiwari, P. Shah, and M. Khare. Nl2rt: A tool to translate natural language text into requirements templates (rts). In 2022 IEEE 30th International Requirements Engineering Conference (RE), pages 262–263. IEEE, 2022.
J. H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301):236–244, 1963.
L. Wu, N. C. Pa, R. Abdullah, and W. N. W. A. Rahman. An analysis of knowledge sharing behaviors in requirement engineering through social media. In 2015 9th Malaysian Software Engineering Conference (MySEC), pages 93–98. IEEE, 2015.
W. Xiang and B. Wang. A survey of implicit discourse relation recognition. ACM Computing Surveys, 55(12):1–34, 2023.
R. Yager. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 18(1):183–190, 1988.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98633-
dc.description.abstract在需求工程領域中存在三項挑戰:第一,需求分類在樣本數少的類別上表現不佳,且高度依賴關鍵詞;第二,自然語言需求具有模糊性與歧義性;第三,手動擷取目標導向使用案例模型耗時且需經驗與技術。為了解決這些問題,本研究提出一套自動化的需求分析與轉換流程,可用於從自然語言需求中推導出 EARS 需求與目標導向使用案例模型。

首先,我們設計一種使用集成學習的自動化需求分類流程,整合主題、句子與詞彙三種層級的語意分類,並透過兩階段分群演算法與軟分群以符合需求的語意模糊性,最後利用有序加權平均運算子(OWA)動態調整與整合模型的預測結果。結果顯示在 PROMISE_exp 資料集中,我們的方法在非功能需求中各類別表現皆優於傳統方法,即使關鍵詞被替換,F1-score 仍能維持較佳表現。

其次,我們提出一套從自然語言需求自動轉換為 EARS 需求的流程,包含規則導向的轉換機制,可判別六種 EARS 類別,以及結合語意與語法相似度的評估機制,以確保 EARS 轉換的完整性與一致性。

最後,我們自動化生成目標導向使用案例模型。透過語意角色標註擷取潛在使用案例,進行過濾與合併;接著,使用擴散模型與 PDTB 2.0 資料集,推導需求間的語意關係,對應至「包含」、「擴展」與「目標至使用案例」三種使用案例模型中的關係。將目標分類後,產生目標導向使用案例圖與使用案例規格。我們亦設計一套評估機制,驗證從需求到目標、目標到使用案例、使用案例到測試案例三個層級的覆蓋度與可追蹤性。
zh_TW
dc.description.abstractIn requirements engineering, there are three challenges: (1) requirements classification has worse performance in low proportion subcategories of non-functional requirements (NFRs) and is dependent on the appearance of keywords; (2) natural language (NL) requirements are often vagueness and ambiguous; and (3) manually extracting goal-driven use case models is time-consuming and requires experience and skills. To address these issues, we propose an automated pipeline for analyzing and transforming NL requirements into structured Easy Approach to Requirements Syntax (EARS) and goal-driven use case models.

First, we design an automated requirements classification process using ensemble learning, which integrates semantic classification at the topic, sentence, and word levels. We then apply our two-stage clustering algorithm with soft clustering to capture fuzziness in requirements semantics. Finally, we utilize the Ordered Weighted Averaging (OWA) operator to dynamically adjust and aggregate the predictions from different models. Evaluation results on the PROMISE_exp dataset indicate that our method outperforms the traditional approach in NFR subcategories and maintains a higher F1-score even when keywords are replaced.

Second, we propose an automated process to convert NL requirements into EARS requirements, including a rule-based conversion mechanism for identifying six types of EARS requirements and an evaluation mechanism that examines both semantic and syntactic similarity to help ensure the consistency and completeness of the EARS transformation.

Finally, we automatically generate goal-driven use case models. We extract potential use cases using semantic role labeling, perform filtering and merging, and identify discourse relations between requirements using a diffusion model and the PDTB 2.0 dataset. These relations are mapped to three types of relations in the use case model: include, extend, and from goal to use case. After identifying goals, we obtain the goal-driven use case model and generate the use case diagram and use case specification. To assess the quality of the generated model, we propose a goal-driven evaluation that measures the coverage and traceability from requirements to goals, from goals to use cases, and from use cases to test cases.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:09:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:09:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements ii
摘要 iii
Abstract v
Contents viii
List of Figures xii
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Related Work 6
2.1 Requirements classification 6
2.2 Requirements extraction 7
2.3 Use case model extraction 8
Chapter 3 Requirements Classification 9
3.1 Preprocess 11
3.2 Build Seed Words 11
3.3 Vectorize 12
3.3.1 Word2Vec 13
3.3.2 Text-to-Text Transfer Transformer(T5) 13
3.3.3 BoW and TF-IDF 13
3.4 Cluster 14
3.4.1 Two-stage clustering 14
3.4.1.1 Density-Based Clustering 15
3.4.1.2 Find the Optimal Number of Clusters 15
3.4.1.3 Hierarchical Clustering 16
3.4.1.4 Determine the category of subclusters 17
3.4.1.5 Predict the category of test embedding 17
3.4.2 Baseline models 18
3.4.2.1 Logistic Regression Classifier 18
3.4.2.2 Naive Bayes Classifier 18
3.5 Aggregate 19
3.6 Evaluation 20
3.6.1 Dataset 20
3.6.2 Evaluation metrics 21
3.6.3 Research questions 21
3.6.4 Discussion and Results 22
Chapter 4 EARS Requirements Generation 25
4.1 Extract Linguistic Features 26
4.2 Decompose Requirements 27
4.3 Classify to EARS Type 28
4.4 Generate EARS Requirements 30
4.5 Evaluation 32
4.5.1 Dataset 33
4.5.2 Evaluation metrics 33
4.5.3 Research questions 34
4.5.4 An Illustrated Example — Meeeting scheduler system 35
Chapter 5 Goal-driven Use Case Model Generation 38
5.1 Preprocess Requirements 38
5.2 Generate Potential Use Cases 40
5.3 Generate Valid Use Cases 41
5.4 Merge Valid Use Cases 42
5.5 Identify Requirements Relations 43
5.6 Construct Goal-Driven Use Case Model Relations 45
5.7 Identify Goals 47
5.8 Generate Use Case Diagram 47
5.9 Generate Use Case Specification 48
5.10 Evaluation 50
5.10.1 Research questions 50
5.10.2 An Illustrated Example — Meeeting scheduler system 51
5.10.2.1 Map requirements to goals 52
5.10.2.2 Map goals to use cases 52
5.10.2.3 Map use cases to test cases 53
Chapter 6 Threats to validity 55
Chapter 7 Conclusion 58
References 60
Appendix A — Meeting Scheduler System 68
A.1 Requirements and EARS Requirements 68
-
dc.language.isoen-
dc.subject軟體需求zh_TW
dc.subject目標導向使用案例zh_TW
dc.subject自然語言處理zh_TW
dc.subjectEARS 需求zh_TW
dc.subject需求擷取zh_TW
dc.subjectRequirements Elicitationen
dc.subjectEARS (Easy Approach to Requirements Syntax)en
dc.subjectNatural Language Processingen
dc.subjectSoftware Requirementsen
dc.subjectGoal-driven Use Caseen
dc.title以目標導向使用案例強化EARS軟體需求zh_TW
dc.titleEnhance EARS Software Requirements with Goal-driven Use Case Approachen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔣偉寧;郭大維;蘇木春;Lawrence Chungzh_TW
dc.contributor.oralexamcommitteeWei-Ling Chiang;Ta-Wei Kuo;Mu-Chun Su;Lawrence Chungen
dc.subject.keyword目標導向使用案例,軟體需求,需求擷取,EARS 需求,自然語言處理,zh_TW
dc.subject.keywordGoal-driven Use Case,Software Requirements,Requirements Elicitation,EARS (Easy Approach to Requirements Syntax),Natural Language Processing,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202503704-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
11.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved