Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98631
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許聿廷zh_TW
dc.contributor.advisorYu-Ting Hsuen
dc.contributor.author鍾淯全zh_TW
dc.contributor.authorYu-Cyuan Jhongen
dc.date.accessioned2025-08-18T01:08:57Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citationAkçelik, R. (1988). The highway capacity manual delay formula for signalized intersections. ITE Journal, 58(3), 23–27.
Akgüngör, A. P., & Bullen, A. G. R. (1999). Analytical delay models for signalized intersections. Transportation Frontiers for the Next Millennium: 69th Annual Meeting of the Institute of Transportation Engineers.
Allsop, R. E. (1981). Computer program sigset for calculating delay-minimising traffic signal timings: Description and manual for users (Technical Report). Transport and Road Research Laboratory. Crowthorne, Berkshire, UK.
Braun, R. R., & Roddin, M. F. (1978). Quantifying the benefits of separating pedestrians and vehicles (National Cooperative Highway Research Program Report No. 189). Transportation Research Board. Washington, D.C.
Chen, P., Qi, H., & Sun, J. (2014). Investigation of saturation flow on shared right-turn lane at signalized intersections. Transportation Research Record, 2461(1), 66–75. https://doi.org/10.3141/2461-09
Heydecker, B. G. (1992). Sequencing of traffic signals. Mathematics in Transport Planning and Control, (38).
Ma, W., Liu, Y., & Head, L. (2014). Optimization of pedestrian phase patterns at signalized intersections: A multi-objective approach. Journal of Advanced Transportation, 48(8), 1138–1152. https://doi.org/10.1002/atr.1256
Milazzo, J. S., Rouphail, N. M., Hummer, J. E., & Allen, D. P. (1998). Effect of pedestrians on capacity of signalized intersections. Transportation Research Record, 1646(1), 37–46. https://doi.org/10.3141/1646-05
PTV Group. (2025). Ptv vissim 2025 user manual. PTV Planung Transport Verkehr GmbH. Karlsruhe, Germany.
Roshani, M., & Bargegol, I. (2017). Effect of pedestrians on the saturation flow rate of right turn movements at signalized intersection - case study from rasht city. IOP Conference Series: Materials Science and Engineering, 245(4), 042032. https://doi.org/10.1088/1757-899X/245/4/042032
Rouphail, N. M., & Eads, B. S. (1997). Pedestrian impedance of turning-movement saturation flow rates: Comparison of simulation, analytical, and field observations. Transportation Research Record, 1578(1), 56–63. https://doi.org/10.3141/1578-08
Silcock, J. P. (1997). Designing signal-controlled junctions for group-based operation. Transportation Research Part A: Policy and Practice, 31(2), 157–173. https://doi.org/10.1016/S0965-8564(96)00008-0
Transportation Research Board. (2000). Highway capacity manual.
Transportation Research Board. (2010). Highway capacity manual (5th ed.).
Virkler, M. R. (1998). Pedestrian compliance effects on signal delay. Transportation Research Record, 1636(1), 88–91. https://doi.org/10.3141/1636-14
Webster, F. V. (1958). Traffic signal settings (Road Research Technical Paper No. 39). Road Research Laboratory. London.
Wong, C. K., & Wong, S. C. (2003). Lane-based optimization of signal timings for isolated junctions. Transportation Research Part B: Methodological, 37(1), 63–84. https://doi.org/10.1016/S0191-2615(01)00045-5
Yu, C., Ma, W., Han, K., & Yang, X. (2017). Optimization of vehicle and pedestrian signals at isolated intersections. Transportation Research Part B: Methodological, 98, 135–153. https://doi.org/10.1016/j.trb.2016.12.015
Yu, C., Ma, W., & Yang, X. (2020). A time-slot based signal scheme model for fixed-time control at isolated intersections. Transportation Research Part B: Methodological, 140, 176–192. https://doi.org/10.1016/j.trb.2020.08.004
交通部運輸研究所. (2022). 臺灣公路容量手冊.
內政部營建署. (2001). 市區道路工程規劃及設計規範之研究. https://myway.nlma.gov.tw/
吳崇歆. (2015). 號誌化路口行人一段式及兩段式穿越比較研究[碩士論文]. 國立臺灣大學土木工程學研究所.
扈菀庭. (2024). 考量行人優先條件下之號誌設計準則探討. 113 年道路交通安全與執法研討會.
易緯工程顧問股份有限公司. (2022). 110 年度臺北市交通流量及特性調查委託專業服務案(111 年度後續擴充一般路口、圓環、路段交通量調查) [臺北市交通管制工程處委託]. https://data.taipei/dataset/detail?id=367128a7-24d6-4aaeaef5-2549232b8d10
符人懿. (2011). 號誌化路口行人早開時相與控制策略之研究[碩士論文]. 淡江大學運輸管理學系.
臺北市政府交通局. (2022). 臺北市路口號誌時制計畫. https://data.taipei/dataset/detail?id=0d639f73-cbcc-42c3-aa53-20efac199701
賴朝睿. (2018). 右轉車輛與行人同一時相對混合直右車道飽和流率之影響分析與改善策略評估[碩士論文]. 國立臺灣大學土木工程學研究所.
道路交通標誌標線號誌設置規則[2024 年10 月22 日修正]. (2024). https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=K0040014
道路交通管理處罰條例[2024 年5 月29 日修正]. (2024). https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=K0040012
黃厚淳. (2004). 設置行人專用時相對車輛與行人延滯影響之研究[碩士論文]. 國立交通大學交通運輸研究所.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98631-
dc.description.abstract隨著都市化發展,市區道路在尖峰期間難免發生壅塞,且行人與車輛的互動甚或衝突頻率日益增加。另一方面,隨著人本交通環境意識的提升,近年來臺灣各地方政府積極致力於改善交通環境;法規方面亦將駕駛未禮讓行人的罰鍰提高,期望提升行人安全。然而,在存在右轉車輛與穿越行人同綠的路口設計下,考量行人優先原則,右轉車輛需禮讓行人,導致後方車隊增長,平均延滯時間上升。因此在保障行人安全的同時,如何兼顧交通效率,避免延滯過度增加,亦是甚須探討的問題。
本研究著重在右轉交通車流效率改善,以行人優先為前提,檢視右轉車輛的飽和流率受行人阻擋影響的變化,透過調整行人綠燈長度,以達成兩項最佳化目標:一是最小化行人與右轉車輛的整體平均延滯,二是最小化兩者平均延滯的差異。不同於現行設計手冊僅以單一行人阻擋折減因子處理人車衝突,本研究進一步考量人車同綠情境下的實際紓解行為。行人常於綠燈初期大量通行,而右轉車輛則需待行人紓解率與抵達率趨於平衡後,才逐漸恢復應有的紓解能力。此種人車互動關係可劃分為 12 種型態,本研究並依此建立多流動延滯模型,用以呈現行人與車輛的抵達線與紓解線之交會平衡時間。模型假設行人與車輛抵達率為常數,行人紓解率受行人號誌變化影響,右轉車紓解率則同時受行人紓解變化與車輛號誌控制所影響,整體以分段線性方式表示。
本研究針對臺北市六個主要路口的行穿線與衝突右轉車道進行觀測,以人車衝突區域作為計數區,取得行人與車輛的抵達與不同時段的紓解數據。彙整資料後發現,穿越行人與右轉車輛的紓解率呈對數關係,此結果可作為後續最佳化模型的參數輸入。研究結果顯示,若人車抵達率處於一般狀況,建議給予最長的行人綠燈時間以獲得整體最小延滯;若考量人車平等,則行人綠燈長度通常會建議調整至可行解範圍的中間區段,以達到人車延滯最小差異之目標。
zh_TW
dc.description.abstractWith ongoing urbanization, traffic congestion in urban areas has become inevitable during peak hours, and interactions or even conflicts between pedestrians and vehicles occur frequently. Meanwhile, as awareness of humanity-oriented traffic environments continues to grow, local governments in Taiwan have been actively working on improving road facilities, and for the regulatory aspect, penalties for drivers who fail to yield to pedestrians have been raised, all to pursue in enhancing pedestrian safety. However, in intersection designs where right-turning vehicles and crossing pedestrians share a concurrent green phase, prioritizing pedestrians generally means right-turning vehicles must yield, which can result in longer queues and increased average delays. While ensuring pedestrian safety, how to maintain traffic efficiency and prevent excessive delay is also worth further investigation.
This study focuses on improving right-turn traffic efficiency under the premise of pedestrian priority. By adjusting the pedestrian green duration, the study proposes two optimization objectives: (1) minimizing the overall average delay of pedestrians and right-turning vehicles, and (2) minimizing the difference between the two delays. Unlike existing design manuals that address pedestrian blockage using a single adjustment factor, this study incorporates real-world discharge behavior under concurrent green conditions. Pedestrians tend to discharge in greater volumes during the early part of the green phase, while right-turning vehicles gradually recover their dischargeability as the pedestrian discharge rate reaches arrival rate. These pedestrian-vehicle interactions are categorized into 12 cases, forming a multi-movement delay model that identifies the timepoint when arrival and discharge curves intersect. The model assumes constant arrival rates for both pedestrians and vehicles. Pedestrian discharge rates vary with pedestrian signal changes, while right-turn vehicle discharge rates are affected by both pedestrian movement and vehicle signal phases. All discharge trends are represented using piecewise linear functions.
Field data were collected from six major intersections in Taipei City, focusing on pedestrian crosswalks and their conflicting right-turn lanes. The pedestrian-vehicle conflict zone was used as the counting area to capture arrival and discharge volumes during different time intervals. Analysis shows that the discharge rates of pedestrians and right-turning vehicles follow a logarithmic relationship, which is then used as parameter input to the optimization model. Results indicate that under typical arrival conditions, the longest pedestrian green duration yields the lowest total delay. When emphasizing equity between pedestrians and vehicles, the pedestrian green time is generally recommended to be set near the middle of the feasible range to minimize the delay difference between the two user groups.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:08:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:08:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 i
中文誌謝 iii
Acknowledgements v
中文摘要 vii
Abstract ix
Contents xi
List of Figures xv
List of Tables xviii
1 Introduction 1
1.1 Research Background 1
1.2 Research Motivation 2
1.3 Research Objectives 3
1.4 Thesis Organization 4
2 Literature Review 7
2.1 Traffic Signal Regulations 7
2.1.1 Pedestrian Signal Phases 7
2.1.2 Criteria for Signal Stage Selection 8
2.1.3 Signal Transition Settings 8
2.2 Saturation Flow Rates 10
2.2.1 Related Definitions 10
2.2.2 Saturation Flow Rate Adjustments 12
2.2.3 Extended Discussions 14
2.3 Delay Estimations 16
2.3.1 Vehicular Delay 16
2.3.2 Pedestrian Delay 19
2.4 Signal Phase Design Methods 20
2.5 Other Pedestrian-Related Designs 22
2.6 Research Gap and Discussions 24
3 Methodology 27
3.1 Modeling Framework 27
3.2 Environment Settings and Assumptions 29
3.2.1 Intersection Layout and Conflict Area of Focus 29
3.2.2 Signal Phase Design of Focus 30
3.2.3 Other Assumptions 31
3.3 Notations 32
3.4 Delay Model Development 35
3.4.1 Discharge Rate Variable Relationships 35
3.4.2 PCP Delay Formulas 39
3.4.3 RTV Delay Formulas 42
3.5 Objective Functions and Constraints 53
3.5.1 Objective Functions 53
3.5.2 Signal Timing-Related Constraints 53
3.5.3 Delay Area Enclosure Constraints 54
3.5.4 Intersection Timepoint Constraints 54
3.5.5 Volume Conservation Constraints 57
3.5.6 Other Constraints 62
3.6 Model Implementation 63
4 Case Study 65
4.1 Site Selections 65
4.2 Data Collection 65
4.2.1 Government Open-Source Datasets 66
4.2.2 Field Observations 68
4.3 Discharge Rate Relationship Curve 75
4.4 Results 82
4.4.1 Multi-Delay Models 82
4.4.2 Best Pedestrian Green Duration 86
4.4.3 Comparison with Vissim Outputs 94
4.5 Sensitivity Analysis 100
5 Conclusions and Suggestions 107
5.1 Conclusions 107
5.2 Limitations and Future Work 108
References 111
Appendix A Full Data Collection 115
A.1 Procedure for Collecting Discharge Rate Pairs 115
A.2 Surveyed Traffic Flow Data 117
-
dc.language.isoen-
dc.subject多流動延滯模型zh_TW
dc.subject紓解率zh_TW
dc.subject同向穿越行人zh_TW
dc.subject右轉車輛zh_TW
dc.subject行人優先zh_TW
dc.subjectDischarge Rateen
dc.subjectMulti-Movement Delay Modelen
dc.subjectPedestrian Priorityen
dc.subjectRight-Turning Vehicleen
dc.subjectParallel-Crossing Pedestrianen
dc.title交通號誌配時調整對路口延滯最小化之探討:考量行人優先zh_TW
dc.titleInvestigation of Traffic Signal Timing Adjustments to Minimize Intersection Delay: Accounting for Pedestrian Priorityen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳彥向;胡守任zh_TW
dc.contributor.oralexamcommitteeYen-Hsiang Chen;Shou-Ren Huen
dc.subject.keyword多流動延滯模型,紓解率,同向穿越行人,右轉車輛,行人優先,zh_TW
dc.subject.keywordMulti-Movement Delay Model,Discharge Rate,Parallel-Crossing Pedestrian,Right-Turning Vehicle,Pedestrian Priority,en
dc.relation.page130-
dc.identifier.doi10.6342/NTU202503442-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf23.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved