Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98618
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳日騰zh_TW
dc.contributor.advisorRih-Teng Wuen
dc.contributor.author紀定志zh_TW
dc.contributor.authorTing-Chih Chien
dc.date.accessioned2025-08-18T01:06:07Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citationHer Majesty’s Treasury. Hmt (2018), the green book: central government guidance on appraisal and evaluation. The Green Book, 2018.
United Nations. Sustainable development goals, 2015. Accessed: 2025-06-04.
United Nations Environment Programme. 2021 global status report for buildings and construction, 2021. Accessed: 2025-06-04.
Michel Bruneau, Stephanie Chang, Ronald Eguchi, George Lee, Thomas O’Rourke, Andrei Reinhorn, Masanobu Shinozuka, Kathleen Tierney, William Wallace, and Detlof Winterfeldt. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra - EARTHQ SPECTRA, 19, 11 2003.
Gian Paolo Cimellaro, Andrei M. Reinhorn, and Michel Bruneau. Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11):3639– 3649, 2010.
Juan Gustavo Salado Castillo, Michel Bruneau, and Negar Elhami-Khorasani. Functionality measures for quantification of building seismic resilience index. Engineering Structures, 253:113800, 2022.
Kimia Koohfallah, Morteza Raissi Dehkordi, Dina D’Ayala, Gholamreza Gho-drati Amiri, Mahdi Eghbali, and Delbaz Samadian. Seismic resilience of typical steel school building and retrofitting options based on fema p-58 under mainshockaftershock effects. Journal of Building Engineering, 86:108636, 2024.
M. Javad Hashemi, Ali Y. Al-Attraqchi, Robin Kalfat, and Riadh Al-Mahaidi. Linking seismic resilience into sustainability assessment of limited-ductility rc buildings. Engineering Structures, 188:121–136, 2019.
Esmaeel Asadi, Abdullahi M. Salman, and Yue Li. Multi-criteria decision-making for seismic resilience and sustainability assessment of diagrid buildings. Engineering Structures, 191:229–246, 2019.
Ghazanfar Ali Anwar, You Dong, and Yaohan Li and. Performance-based decision-making of buildings under seismic hazard considering long-term loss, sustainability, and resilience. Structure and Infrastructure Engineering, 17(4):454–470, 2021.
Luis Sousa and Ricardo Monteiro. Seismic retrofit options for non-structural building partition walls: Impact on loss estimation and cost-benefit analysis. Engineering Structures, 161:8–27, 2018.
Donatello Cardone, Giuseppe Gesualdi, and Giuseppe Perrone and. Cost-benefit analysis of alternative retrofit strategies for rc frame buildings. Journal of Earthquake Engineering, 23(2):208–241, 2019.
Pedram Omidian and Naser Khaji. A multi-objective optimization framework for seismic resilience enhancement of typical existing rc buildings. Journal of Building Engineering, 52:104361, 2022.
Ali Ghasemof, Masoud Mirtaheri, and Reza Karami Mohammadi. Multi-objective optimization for probabilistic performance-based design of buildings using fema p58 methodology. Engineering Structures, 254:113856, 2022.
Hsi-Hsien Wei, Mirosław J. Skibniewski, Igal M. Shohet, and Xijun Yao. Lifecycle environmental performance of natural-hazard mitigation for buildings. Journal of Performance of Constructed Facilities, 30(3):04015042, 2016.
Nicholas Clemett, Wilson Wladimir Carofilis Gallo, Gerard J. O’Reilly, Giammaria Gabbianelli, and Ricardo Monteiro. Optimal seismic retrofitting of existing buildings considering environmental impact. Engineering Structures, 250:113391, 2022.
Karim Aljawhari, Roberto Gentile, and Carmine Galasso. Beyond direct economic losses: An integrated approach to seismic retrofit considering sustainability and indirect losses. Earthquake Engineering & Structural Dynamics, 54(6):1737–1758, 2025.
Jiajun Du, Wei Wang, Ting Lou, and Hongyu Zhou. Resilience and sustainabilityinformed probabilistic multi-criteria decision-making framework for design solutions selection. Journal of Building Engineering, 71:106421, 2023.
Thomas L Saaty. The analytic hierarchy process (ahp). The Journal of the Operational Research Society, 41(11):1073–1076, 1980.
Ching-Lai Hwang and Kwangsun Yoon. Multiple Attribute Decision Making: Methods and Applications –A State-of-the-Art Survey, volume 186 of Lecture Notes in Economics and Mathematical Systems. Springer, 1981.
Ji-Gang Xu, Xu-Yang Cao, and Gang Wu. Seismic collapse and reparability performance of reinforced concrete frames retrofitted with external pbspc brbf sub-frame in near-fault regions. Journal of Building Engineering, 64:105716, 2023.
A. Mortezaei, H.R. Ronagh, and A. Kheyroddin. Seismic evaluation of frp strengthened rc buildings subjected to near-fault ground motions having fling step. Composite Structures, 92(5):1200–1211, 2010.
Fabio Mazza, Mirko Mazza, and Alfonso Vulcano. Base-isolation systems for the seismic retrofitting of r.c. framed buildings with soft-storey subjected to near-fault earthquakes. Soil Dynamics and Earthquake Engineering, 109:209–221, 2018.
Boyan Ping, Shengxin Yu, and Yifei Wang. Seismic loss and environmental impacts assessment of conventional and emerging steel frames under near-fault ground motions. Journal of Building Engineering, 102:111852, 2025.
蕭輔沛, 鍾立來, 葉勇凱, 簡文郁, 沈文成, 邱聰智, 周德光, 趙宜峰, 翁樸文, 楊耀 昇, 涂耀賢, 柴駿甫, and 黃世建. 校舍結構耐震評估與補強技術手冊第三版. 中 心技術報告 NCREE-2013-023, 國家地震工程研究中心, 財團法人國家實驗研 究院, 12 2013.
內政部建築研究所. 建築物耐震設計規範及解說. 中華民國內政部, March 2024. 113 年 3 月 1 日台內國字第 1130801422 號令修正發布.
Athena Sustainable Materials Institute. Impact estimator for buildings and infrastructure. https://calculatelca.com/software/impact-estimator/, 2025. Accessed: 2025-07-17.
Arezoo Shirazi and Baabak Ashuri. Embodied life cycle assessment (lca) comparison of residential building retrofit measures in atlanta. Building and Environment, 171:106644, 2020.
DatacenterHub (Purdue Univ. & Univ. of Canterbury). Legacy nees datasets–network for earthquake engineering simulation. https://datacenterhub. org/nees.html, 2014. Accessed: 2025-06-16.
Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
Jack Moehle and Gregory Deierlein. A framework methodology for performancebased earthquake engineering. 01 2004.
Selim Günay and Khalid M. Mosalam and. Peer performance-based earthquake engineering methodology, revisited. Journal of Earthquake Engineering, 17(6):829–858, 2013.
CM Ramirez, AB Liel, Judith Mitrani-Reiser, CB Haselton, AD Spear, J Steiner, GG Deierlein, and E Miranda. Expected earthquake damage and repair costs in reinforced concrete frame buildings. Earthquake Engineering & Structural Dynamics, 41(11):1455–1475, 2012.
FEMA P-58. Seismic performance assessment of buildings volume 1-methodology. Applied Technology Council. California: Redwood City, 2012.
T. Y. Yang, J. Moehle, B. Stojadinovic, and A. Der Kiureghian. Seismic performance evaluation of facilities: Methodology and implementation. Journal of Structural Engineering, 135(10):1146–1154, 2009.
Armen Der Kiureghian. Non-ergodicity and peer’s framework formula. Earthquake Engineering & Structural Dynamics, 34(13):1643–1652, 2005.
Jack W Baker. Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31(1):579–599, 2015.
Luis Francisco Ibarra and Helmut Krawinkler. Global collapse of frame structures under seismic excitations. Report 152, The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, August 2005.
Gregory G Deierlein. Overview of a comprehensive framework for earthquake performance assessment. In Performance-based seismic design concepts and implementation, proceedings of an international workshop, pages 15–26, 2004.
Laura Eads, Eduardo Miranda, Helmut Krawinkler, and Dimitrios G. Lignos. An efficient method for estimating the collapse risk of structures in seismic regions. Earthquake Engineering & Structural Dynamics, 42(1):25–41, 2013.
Ibrahim Almufti and Michael Willford. Redi™ rating system: Resilience-based earthquake design initiative for the next generation of buildings. Arup Co, 2013.
Gian P. Cimellaro, Concetta Fumo, Andrei M. Reinhorn, and Michel Bruneau. Quantification of seismic resilience of health care facilities. MCEER Technical Report MCEER-09-0009, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY, 2009.
Computers and Structures, Inc. (CSI). ETABS Version 19.0. Computers and Structures, Inc., Walnut Creek, CA, 2019.
Akanshu Sharma, Rolf Eligehausen, and G Rami Reddy. Pivot hysteresis model parameters for reinforced concrete columns, joints, and structures. ACI Structural Journal, 110:217–227, 03 2013.
Yu-Che Ling, Srinivas Mogili, and Shyh-Jiann Hwang. Parameter optimization for pivot hysteresis model for reinforced concrete columns with different failure modes. Earthquake Engineering Structural Dynamics, 51:2167–2187, 05 2022.
Nathan M Newmark. A method of computation for structural dynamics. Journal of the engineering mechanics division, 85(3):67–94, 1959.
陳 麒 壬. 鋼 構 建 築 物 之 生 命 週 期 成 本 與 永 續 性 分 析. 國立臺灣大學土木工程學系學位論文, pages 1–175, 2024.
Pacific Earthquake Engineering Research Center. NGA-West2 Ground Motion Database, 2025. Accessed: 2025-08-05.
Shu-Hsien Chao, Brian Chiou, Chiao-Chu Hsu, and Po-Shen Lin. Development of horizontal and vertical ground motion models for crustal earthquakes and subduction earthquakes in taiwan. Technical Report NCREE-19-003, National Center for Research on Earthquake Engineering, Taipei, Taiwan, April 2019.
楊甯凱 (Ning-Kai Yang), 黃尹男 (Yin-Nan Huang), 劉勛仁 (Hsun-Jen Liu), and 趙書賢 (Shu-Hsien Chao). 考慮近斷層脈衝影響之隔震設計-以臺北盆地為例. 結構工程, 36(1):39–62, Mar 2021.
Brendon A. Bradley, Rajesh P. Dhakal, Misko Cubrinovski, John B. Mander, and Greg A. MacRae. Improved seismic hazard model with application to probabilistic seismic demand analysis. Earthquake Engineering & Structural Dynamics, 36(14):2211–2225, 2007.
Seong-Hoon Hwang and Dimitrios G. Lignos. Earthquake-induced loss assessment of steel frame buildings with special moment frames designed in highly seismic regions. Earthquake Engineering & Structural Dynamics, 46(13):2141–2162, 2017.
Luís Martins and Vítor Silva. Development of a fragility and vulnerability model for global seismic risk analyses. Bulletin of Earthquake Engineering, 19(15):6719– 6745, 2021.
Saralees Nadarajah and Shaiful Anuar Abu Bakar. Complognormal: An r package for composite lognormal distributions. 2013.
American Society of Civil Engineers. Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers, 2017.
Kenneth E James, Roberta F White, and Helena C Kraemer. Repeated split sample validation to assess logistic regression and recursive partitioning: an application to the prediction of cognitive impairment. Statistics in medicine, 24(19):3019–3035, 2005.
Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun. Hands-on bayesian neural networks—a tutorial for deep learning users. IEEE Computational Intelligence Magazine, 17(2):29–48, 2022.
Federal Emergency Management Agency (FEMA). Benefit-cost analysis reference guide. Technical report, U.S. Department of Homeland Security, FEMA, Washington, DC, 2009. Accessed: 2025-07-11.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98618-
dc.description.abstract實現抗震韌性與永續性已成為當代建築設計與耐震補強的核心目標。一般來說,兩項目標往往需仰賴顯著的前期投資,導致在防災初期成本與長期效益之間存在取捨。因此,如何於評估階段即掌握各補強方案在不同面向上的成本效益,成為實務與研究上的重要課題。鑒於目前業界可選用之補強方案多元,為深入比較其在經濟、環境、社會與抗震韌性四大層面上的表現差異,本研究提出一套建築生命週期導向之多準則決策分析架構,從全生命週期角度評估各種結構補強方案間之效益權衡。依據美國聯邦緊急事務管理署(FEMA)所發布之 P-58 指南,分別採用遠域(Far-Field)與近斷層(Near-Fault)兩類地震歷時資料,進行耐震性能評估。本研究提出一基於數值積分的預期年化損失(Expected Annual Loss, EAL)計算方法,量化補強前後之風險降低效益;此外,本研究模擬山腳斷層錯動發生規模 7.3 且具速度脈衝特性之近斷層地震情境,以評估各補強策略在極端地震事件下之抗震韌性表現。在經濟面向上,為快速且準確地預估不同補強策略所需之初期投入成本,本研究建構一基於貝氏類神經網路(Bayesian Neural Network, BNN)模型,除提供準確金費預測外,亦同時量化其預測不確定性,以反映資料稀缺與物價波動下之潛在風險。進一步將震損減少效益與初期投入成本進行整合,分別計算經濟、環境、社會三個面向上的成本效益比(Benefit-Cost Ratio, BCR),作為多準則決策中之量化評估指標。最後,本研究將所建構之分析架構應用於一棟位於臺北之既有鋼筋混凝土建築進行案例驗證。結果顯示,該架構不僅具備良好之實務可行性,亦能與現行臺灣耐震評估流程高度整合,並拓展其評估範疇與應用深度。本研究所提出之整合性多準則評估架構可依據決策者之偏好進行調整,並全面涵蓋耐震補強策略於永續性與抗震韌性等多重目標下之效益表現,有助於提升補強決策過程之科學性與透明度,亦能為政策制定提供更具系統性與量化依據之支撐。zh_TW
dc.description.abstractAchieving both seismic resilience and sustainability has emerged as a critical objective in contemporary building design and retrofit practice. However, these goals often entail substantial upfront investment, creating trade-offs between initial disaster-prevention costs and long-term benefits. To address this challenge, a life cycle based multi-criteria decision making framework is proposed for systematically evaluating retrofit strategies across four key dimensions including economy, environment, society, and seismic resilience. Based on FEMA P-58 guidelines, the framework incorporates both Far-Field (FF) and Near-Fault (NF) earthquake ground motion records to perform the seismic performance assessments. A integral based approach is developed to estimate the expected annual loss (EAL) more reasonable, enabling quantitative evaluation of risk-reduction benefits before and after retrofit. Additionally, a near-fault earthquake scenario with magnitude 7.3 and velocity-pulse characteristics at the Shan-Chiao fault is simulated to assess the resilience index of each strategy under extreme seismic events. From an economic perspective, a Bayesian Neural Network (BNN) model is developed to forecast initial retrofit costs with quantified uncertainty, accounting for risks stemming from data scarcity and market fluctuations. Combine the initial investment of retrofit with seismic loss-reduction benefits to calculate the benefit-cost ratio (BCR) as a key evaluation index. The proposed framework is applied to a real-world retrofit case involving a reinforced concrete building in Taipei demonstrates its practical feasibility, alignment with Taiwan seismic assessment process, and capacity to deliver a transparent, adaptable decision-support tool. Ultimately, the proposed approach enhances the evidence base for policy formulation and supports more robust, stakeholder-informed seismic retrofit decisions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:06:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:06:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
目次 vii
圖次 xi
表次 xv
第一章 緒論 1
1.1 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 研究挑戰 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 研究目的與貢獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
第二章 研究方法架構 11
2.1 補強方案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 決策標準選取 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 補強建築生命週期分析 . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 永續性評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1.1 建築生命週期分析 . . . . . . . . . . . . . . . . . . . 14
2.3.1.2 補強經費預測模型 . . . . . . . . . . . . . . . . . . . 15
2.3.2 耐震性能評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 韌性評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 成本效益分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 經濟層面 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 社會層面 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 環境層面 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 多準則決策分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.1 層級分析法 (AHP) . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 逼近理想解排序法 (TOPSIS) . . . . . . . . . . . . . . . . . . . . 34
第三章 結果與討論 35
3.1 案例說明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 補強方案設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 擴柱補強設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 翼牆補強設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 結構模型參數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 地震歷時選取與調整 . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 遠域地震歷時選取與調整 . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 近斷層地震歷時選取與調整 . . . . . . . . . . . . . . . . . . . . 44
3.4 耐震性能評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 地震危害度分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 結構分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.3 損失分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.4 預期年化損失 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.5 倒塌風險評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5 永續性評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5.1 建築生命週期分析 . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5.2 貝式類神經網路 . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6 韌性評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7 成本效益分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8 多準則決策分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
第四章 結論與建議 87
4.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 研究限制與未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . 90
參考文獻 93
附錄 A — 建築生命週期分析資料 101
-
dc.language.isozh_TW-
dc.subject建築生命週期永續性zh_TW
dc.subject結構耐震補強zh_TW
dc.subject預期年化損失zh_TW
dc.subject貝氏類神經網路zh_TW
dc.subject建築抗震韌性zh_TW
dc.subjectSeismic resilienceen
dc.subjectBayesian neural networken
dc.subjectExpected annual loss (EAL)en
dc.subjectLife cycle sustainabilityen
dc.subjectSeismic retrofiten
dc.titleRC 結構耐震補強技術於建物生命週期之永續與韌性評估zh_TW
dc.titleLife-Cycle Sustainability and Resilience Assessment of Seismic Retrofit Strategies for RC Buildingsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張國鎮;邱建國;吳東諭;謝依芸zh_TW
dc.contributor.oralexamcommitteeKuo-Chun Chang;Chien-Kuo Chiu;Tung-Yu Wu;I-Yun Hsiehen
dc.subject.keyword結構耐震補強,建築生命週期永續性,建築抗震韌性,貝氏類神經網路,預期年化損失,zh_TW
dc.subject.keywordSeismic retrofit,Life cycle sustainability,Seismic resilience,Bayesian neural network,Expected annual loss (EAL),en
dc.relation.page101-
dc.identifier.doi10.6342/NTU202502232-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2027-01-01-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2027-01-01
8.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved