Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98617
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平zh_TW
dc.contributor.advisorChang-Ping Yuen
dc.contributor.author楊智傑zh_TW
dc.contributor.authorJhih-Jie Yangen
dc.date.accessioned2025-08-18T01:05:53Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citationBaig, A., Siddique, M., & Panchal, S. (2025). A review of visible-light-active zinc oxide photocatalysts for environmental application. Catalysts, 15(2), 100.
Boas, J. V., Oliveira, V. B., Simões, M., & Pinto, A. M. (2022). Review on microbial fuel cells applications, developments and costs. Journal of Environmental Management, 307, 114525.
Chae, K.-J., Choi, M.-J., Kim, K.-Y., Ajayi, F. F., Chang, I.-S., & Kim, I. S. (2009). A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen. Environmental science & technology, 43(24), 9525-9530.
Chang, C.-C., Li, S.-L., Wu, Z.-X., & Yu, C.-P. (2023). Developing a novel computer numerical control-fabricated laminar-flow microfluidic microbial fuel cells as the bioelectrochemical sensor and power source: Enrichment, operation, and Cr (VI) detection. Biosensors and Bioelectronics, 226, 115119.
Chen, D., Xie, Z., Tong, Y., & Huang, Y. (2022). Review on BiVO4-based photoanodes for photoelectrochemical water oxidation: the main influencing factors. Energy & Fuels, 36(17), 9932-9949.
Cheng, L., Tian, Y., & Zhang, J. (2018). Construction of pn heterojunction film of Cu2O/α-Fe2O3 for efficiently photoelectrocatalytic degradation of oxytetracycline. Journal of colloid and interface science, 526, 470-479.
Choi, K.-S., Kondaveeti, S., & Min, B. (2017). Bioelectrochemical methane (CH4) production in anaerobic digestion at different supplemental voltages. Bioresource Technology, 245, 826-832.
D Shete, M., & Fernandes, J. b. (2019). A simple solid-state method to synthesize nanosized ferromagnetic α-Fe2O3 with enhanced photocatalytic activity in sunlight. Bull. Mater. Sci, 42, 254.
Fang, J., Fu, Y., & Shang, C. (2014). The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environmental science & technology, 48(3), 1859-1868.
Feng, Y., Yang, Q., Wang, X., & Logan, B. E. (2010). Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. Journal of Power Sources, 195(7), 1841-1844.
Freguia, S., Rabaey, K., Yuan, Z., & Keller, J. (2007). Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochimica Acta, 53(2), 598-603.
Gul, M. M., & Ahmad, K. S. (2019). Bioelectrochemical systems: sustainable bio-energy powerhouses. Biosensors and Bioelectronics, 142, 111576.
Guo, K., Wu, Z., Shang, C., Yao, B., Hou, S., Yang, X., Song, W., & Fang, J. (2017). Radical chemistry and structural relationships of PPCP degradation by UV/chlorine treatment in simulated drinking water. Environmental science & technology, 51(18), 10431-10439.
GV, B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals. J. Phys. Chem. Ref. Data, 17, 513-887.
Jadhav, D. A., & Ghangrekar, M. M. (2020). Optimising the proportion of pure and mixed culture in inoculum to enhance the performance of microbial fuel cells. International Journal of Environmental Technology and Management, 23(1), 50-67.
Jiang, C., Liu, L., & Crittenden, J. C. (2016). An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity. Frontiers of Environmental Science & Engineering, 10, 1-8.
Kim, B. H., Ikeda, T., Park, H. S., Kim, H. J., Hyun, M. S., Kano, K., Takagi, K., & Tatsumi, H. (1999). Electrochemical activity of an Fe (III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnology Techniques, 13, 475-478.
Lemine, O. (2009). Microstructural characterisation of α-Fe2O3 nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR. Superlattices and Microstructures, 45(6), 576-582.
Li, J., & Wu, N. (2015). Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catalysis Science & Technology, 5(3), 1360-1384.
Li, J., You, J., Wang, Z., Zhao, Y., Xu, J., Li, X., & Zhang, H. (2022). Application of α-Fe2O3-based heterogeneous photo-Fenton catalyst in wastewater treatment: a review of recent advances. Journal of Environmental Chemical Engineering, 10(5), 108329.
Liang, Y., Feng, H., Shen, D., Long, Y., Li, N., Zhou, Y., Ying, X., Gu, Y., & Wang, Y. (2016). Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction. Journal of Power Sources, 324, 26-32.
Lin, F.-Y., Lin, Y.-Y., Li, H.-T., Ni, C.-S., Liu, C.-I., Guan, C.-Y., Chang, C.-C., Yu, C.-P., Chen, W.-S., & Liu, T.-Y. (2022). Trapa natans husk-derived carbon as a sustainable electrode material for plant microbial fuel cells. Applied Energy, 325, 119807.
Logan, B. E., Call, D., Cheng, S., Hamelers, H. V., Sleutels, T. H., Jeremiasse, A. W., & Rozendal, R. A. (2008). Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environmental science & technology, 42(23), 8630-8640.
Ma, M., Huang, Y., Liu, J., Liu, K., Wang, Z., Zhao, C., Qu, S., & Wang, Z. (2020). Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting. Journal of Semiconductors, 41(9), 091702.
Madhavi, D. S., & Fernandes, J. b. (2019). A simple solid-state method to synthesize nanosized ferromagnetic α-Fe2O3 with enhanced photocatalytic activity in sunlight. Bull. Mater. Sci, 42, 254.
Malathi, A., Madhavan, J., Ashokkumar, M., & Arunachalam, P. (2018). A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Applied Catalysis A: General, 555, 47-74.
Meng, A., Zhang, L., Cheng, B., & Yu, J. (2019). Dual cocatalysts in TiO2 photocatalysis. Advanced Materials, 31(30), 1807660.
Mitra, S., Das, S., Mandal, K., & Chaudhuri, S. (2007). Synthesis of a α-Fe2O3 nanocrystal in its different morphological attributes: growth mechanism, optical andmagnetic properties. Nanotechnology, 18(27), 275608.
Moreno-Jimenez, D. A., & Kim, K.-Y. (2022). Enhanced wettability improves catalytic activity of nickel-functionalized activated carbon cathode for hydrogen production in microbial electrolysis cells. Bioresource Technology, 350, 126881.
Nosek, D., Jachimowicz, P., & Cydzik-Kwiatkowska, A. (2020). Anode modification as an alternative approach to improve electricity generation in microbial fuel cells. Energies, 13(24), 6596.
Pan, Y., Zheng, X., Zhao, G., Rao, Z., Yu, W., Chen, B., & Chu, C. (2023). Water vapor condensation on iron minerals spontaneously produces hydroxyl radical. Environmental science & technology, 57(23), 8610-8616.
Park, J.-S., Choi, H., & Cho, J. (2004). Kinetic decomposition of ozone and para-chlorobenzoic acid (p-CBA) during catalytic ozonation. Water research, 38(9), 2285-2292.
Pessoa, R., Fraga, M., Santos, L., Massi, M., & Maciel, H. (2015). Nanostructured thin films based on TiO2 and/or SiC for use in photoelectrochemical cells: A review of the material characteristics, synthesis and recent applications. Materials Science in Semiconductor Processing, 29, 56-68.
Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the royal society of London. Series b, containing papers of a biological character, 84(571), 260-276.
Qiu, P., Li, F., Zhang, H., Wang, S., Jiang, Z., & Chen, Y. (2020). Photoelectrochemical performance of α-Fe2O3@ NiOOH fabricated with facile photo-assisted electrodeposition method. Electrochimica Acta, 358, 136847.
Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. TRENDS in Biotechnology, 23(6), 291-298.
Rajeshwar, K., Ibanez, J. G., & Swain, G. M. (1994). Electrochemistry and the environment. Journal of applied electrochemistry, 24(11), 1077-1091.
Sharma, A., Hosseini-Bandegharaei, A., Kumar, N., Kumar, S., & Kumari, K. (2022). Insight into ZnO/carbon hybrid materials for photocatalytic reduction of CO2: An in-depth review. Journal of CO2 Utilization, 65, 102205.
Sundaramurthy, J., Kumar, P. S., Kalaivani, M., Thavasi, V., Mhaisalkar, S. G., & Ramakrishna, S. (2012). Superior photocatalytic behaviour of novel 1D nanobraid and nanoporous α-Fe2O3 structures. RSC Advances, 2(21), 8201-8208.
Thiruvenkatachari, R., Vigneswaran, S., & Moon, I. S. (2008). A review on UV/TiO2 photocatalytic oxidation process (Journal Review). Korean Journal of Chemical Engineering, 25(1), 64-72.
Wang, G., Huang, L., & Zhang, Y. (2008). Cathodic reduction of hexavalent chromium [Cr (VI)] coupled with electricity generation in microbial fuel cells. Biotechnology letters, 30, 1959-1966.
Wang, H., Qian, F., Wang, G., Jiao, Y., He, Z., & Li, Y. (2013). Self-biased solar-microbial device for sustainable hydrogen generation. ACS nano, 7(10), 8728-8735.
Wang, Z., Du, Y., Zhou, P., Xiong, Z., He, C., Liu, Y., Zhang, H., Yao, G., & Lai, B. (2023). Strategies based on electron donors to accelerate Fe (III)/Fe (II) cycle in Fenton or Fenton-like processes. Chemical Engineering Journal, 454, 140096.
Wu, N., Wang, J., Tafen, D. N., Wang, H., Zheng, J.-G., Lewis, J. P., Liu, X., Leonard, S. S., & Manivannan, A. (2010). Shape-Enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts. Journal of the American Chemical Society, 132(19), 6679-6685. https://doi.org/10.1021/ja909456f
Xia, C., Hu, C., Xiong, Y., & Wang, N. (2009). Synthesis of α-Fe2O3 hexagons and their magnetic properties. Journal of alloys and compounds, 480(2), 970-973.
Yali, W., Xiaoning, H., Cui, S., Xibo, H., Xiaoyu, M., & Liwei, H. Study on the Conversion Mechanism of Iron-Containing Coal Gasification Slag to No in High Temperature Flue Gas of Cement Kiln. Available at SSRN 4080783.
Yang, J.-S., Lai, W. W.-P., & Lin, A. Y.-C. (2021). New insight into PFOS transformation pathways and the associated competitive inhibition with other perfluoroalkyl acids via photoelectrochemical processes using GOTiO2 film photoelectrodes. Water research, 207, 117805.
Yaqoob, A. A., Ibrahim, M. N. M., & Guerrero-Barajas, C. (2021). Modern trend of anodes in microbial fuel cells (MFCs): an overview. Environmental technology & innovation, 23, 101579.
Yu, C.-P., Liang, Z., Das, A., & Hu, Z. (2011). Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water research, 45(3), 1157-1164.
Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012(1), 624520.
Zhou, J., Xu, N. S., & Wang, Z. L. (2006). Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials, 18(18), 2432-2435.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98617-
dc.description.abstract隨著科技的快速發展與人口數量的增長,全球對於水資源與能源的需求日益上升,導致環境中的水體受到大量有機物、重金屬和其他有害物質的污染,造成嚴重的環境污染問題。傳統水處理技術普遍存在能耗高、操作成本高及處理效率有限等缺點,因此開發兼具污染物降解與能源回收之綠色能源技術,成為當前各國關注的研究議題。
微生物燃料電池( Microbial Fuel Cell, MFC )是一種結合廢水處理與產生電能的技術,利用產電菌在厭氧的環境下分解有機物物並產生電子,電子再透過外部電路產生電流;光電化學電池( Photoelectrochemical Cell, PEC )則透過太陽光照射於半導體材料以產生電子-電洞對,進一步生成活性氧化物( Reactive Oxygen Species, ROS )以降解污染物,或經由水解反應產生氫氣。然而,MFC與PEC系統各自存在技術上的限制與缺點,因此本研究嘗試將這兩種系統進行結合,以減少其單獨運行時的限制,並進一步探討其自由基產生機制。
本研究以台北市迪化污水廠之厭氧污泥作為MFC之微生物來源,並採用H-type雙槽式反應槽進行MFC與PEC系統建構。整體研究分為三個階段:第一階段為MFC系統之產電菌馴養;第二階段進行α-Fe2O3光電極之合成與表面特性分析;第三階段將MFC與PEC系統進行整合,並於不同曝氣與光照條件下,探討其對自由基產生的影響,藉此釐清操作條件與自由基生成之關聯性,以作為未來污水處理應用與系統設計之參考依據。
研究結果顯示,光照條件可做為驅動PEC反應之重要因素;而在避光與照光條件下,相較於單一PEC系統,MFC-PEC系統所產生之·OH與雙氧水濃度皆更高,由此證實MFC所提供之電子對自由基與雙氧水的產生也有幫助。本研究證實MFC與PEC系統之整合可有效提升自由基與雙氧水的產生表現,顯示其應用於水污染整治之可行性與潛力,有望作為未來永續水處理技術之發展方向。
zh_TW
dc.description.abstractWith rapid technological advancement and population growth, global demand for water and energy has significantly increased, resulting in severe environmental pollution issues, including contamination by organic pollutants, heavy metals, and other hazardous substances in water bodies. Traditional wastewater treatment technologies often suffer from high energy consumption, elevated operational costs, and limited treatment efficiency. Thus, the development of green technologies capable of simultaneously degrading pollutants and recovering energy has become an important research topic worldwide.
Microbial fuel cell (MFC) integrates wastewater treatment and electricity generation by utilizing electrochemically active bacteria that anaerobically degrade organic matter and generate electrons, which flow through an external circuit to produce electricity. Photoelectrochemical cell (PEC), another promising technology, uses solar irradiation on semiconductor materials to generate electron–hole pairs, leading to the formation of reactive oxygen species (ROS) for pollutant degradation and enabling hydrogen production via photocatalytic water splitting. However, both MFC and PEC systems individually face technical limitations. To address these limitations, this study integrates MFC and PEC systems to explore the mechanisms of radical generation under different operational conditions, aiming to evaluate their synergistic potential in sustainable wastewater treatment.
In this study, anaerobic sludge was collected from Dihua Wastewater Treatment Plant in Taipei City and used as the microorganism source. Both MFC and PEC systems were constructed using H-type dual-chamber reactors. The research comprised three stages: the first stage involved the cultivation and acclimation of electroactive bacteria in the MFC; the second stage involved the synthesis and surface characterization of α-Fe₂O₃ photoelectrodes; and the third stage focused on integrating MFC and PEC systems under different aeration and illumination conditions, to explore their influence on radical generation, thereby elucidating the correlation between operational parameters and radical production. The results provide valuable insights and guidelines for future wastewater treatment applications and system design.
Experimental results demonstrated that illumination significantly promotes radical generation, indicating that it is an essential factor for driving PEC reactions. Under both dark and illuminated conditions, the integrated MFC-PEC system showed higher steady-state concentrations of •OH and H2O2 compared to the PEC system alone, confirming that electrons supplied from the MFC promotes radical production. Overall, this study confirmed that integrating MFC and PEC systems effectively enhances radical and H2O2 generation performance, highlighting the feasibility and potential of this integrated system for water pollution remediation for developing sustainable wastewater treatment technologies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:05:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:05:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 iii
摘要 v
ABSTRACT vi
目次 ix
圖次 xiii
表次 xv
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究架構圖 3
第二章 文獻回顧 5
2.1 微生物燃料電池發展 5
2.1.1 微生物燃料電池之沿革 5
2.1.2 微生物燃料電池之產電與運作機制 6
2.1.3 陽極產電菌種 9
2.2 光電化學與光催化原理 10
2.2.1 光電化學電池之運行原理 10
2.2.2 光催化反應機制 11
2.2.3 光電化學電池電極材料 12
第三章 材料與方法 15
3.1 實驗藥品與設備 15
3.1.1 實驗用藥品 15
3.1.2 實驗儀器與設備 18
3.2 微生物燃料電池系統 20
3.2.1 雙槽式微生物燃料電池 20
3.2.2 菌種來源與馴養 20
3.2.3 微生物燃料電池之電極製備 21
3.2.4 雙槽式微生物燃料電池之運行 22
3.3 光電化學電池系統 23
3.3.1 雙槽式光電化學電池 23
3.3.2 光源裝置與操作條件 23
3.3.3 光電化學電池之電極製備 24
3.4 電極材料之結構與表面形貌分析 28
3.4.1 X光粉末繞射儀 28
3.4.2 掃描式電子顯微鏡 29
3.4.3 高能量化學分析電子能譜儀 30
3.5 電極特性分析 31
3.5.1 電壓量測與紀錄 31
3.5.2 線性循環伏安法(Linear sweep voltammetry, LSV) 32
3.6 微生物燃料電池與光電化學電池整合系統測試 33
3.7 光電陽極之水中自由基與H₂O₂產出分析 35
3.7.1 溶氧對光電化學電池之影響測試(p-CBA法) 35
3.7.1.1 高效液相層析 36
3.7.1.2 ·OH產出測試 36
3.7.2 曝氣條件下·OH與·O–2之定量分析(NB/HQ法) 37
3.7.2.1 •OH、•O–2定量分析 37
3.7.3 H2O2定量分析 39
3.7.3.1 H2O2檢量線製備 39
3.7.3.2 光電極H2O2產出量測 41
第四章 結果與討論 43
4.1 微生物產電表現與光電極光暗循環電壓分析 43
4.1.1 微生物產電能力分析 43
4.1.2 不同製備方式光電極之產電表現比較 44
4.1.2.1 不鏽鋼電極之產電能力分析 44
4.1.2.2 FTO電極之產電能力分析 46
4.2 光電極特性分析 48
4.2.1 電極材料分析 48
4.2.1.1 X光粉末繞射儀結果 48
4.2.1.2 掃描式電子顯微鏡結果 49
4.2.2 電極表面分析 50
4.2.2.1 掃描式電子顯微鏡(不鏽鋼電極) 50
4.2.2.2 掃描式電子顯微鏡(FTO電極) 53
4.2.2.3 高能量化學分析電子能譜儀 56
4.3 光電極之電化學分析 58
4.3.1 線性循環伏安法 58
4.4 溶氧對光電化學電池系統之影響試驗 59
4.4.1 產電行為分析 59
4.4.2 自由基產出試驗 59
4.4.3 雙氧水產出表現分析 61
4.4.4 DO 62
4.5 微生物燃料電池與光電化學電池之串/並聯分析 63
4.6 並聯系統之自由基產出表現分析 64
4.6.1 產電行為分析 64
4.6.2 自由基產出表現分析 67
4.6.3 雙氧水產出表現分析 70
4.6.4 pH 72
第五章 結論與建議 73
5.1 結論 73
5.2 建議 75
參考文獻 76
-
dc.language.isozh_TW-
dc.subject厭氧污泥zh_TW
dc.subject微生物燃料電池zh_TW
dc.subject活性氧化物zh_TW
dc.subject光電極zh_TW
dc.subject光電化學電池zh_TW
dc.subjectPhotoelectrochemical Cellen
dc.subjectPhotoanodeen
dc.subjectReactive Oxygen Speciesen
dc.subjectAnaerobic sludgeen
dc.subjectMicrobial Fuel Cellen
dc.title結合微生物燃料電池與光電化學電池探討其自由基產生機制zh_TW
dc.titleInvestigation of Radical Generation Mechanisms in an Integrated Microbial Fuel Cell and Photoelectrochemical Cell Systemen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee童心欣;張朝欽zh_TW
dc.contributor.oralexamcommitteeHsin-Hsin Tung;Chao-Chin Changen
dc.subject.keyword微生物燃料電池,厭氧污泥,光電化學電池,光電極,活性氧化物,zh_TW
dc.subject.keywordMicrobial Fuel Cell,Anaerobic sludge,Photoelectrochemical Cell,Photoanode,Reactive Oxygen Species,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202503581-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved