請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98603完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕蓓德 | zh_TW |
| dc.contributor.advisor | Pei-Te Chiueh | en |
| dc.contributor.author | 黃詩雯 | zh_TW |
| dc.contributor.author | Shih-Wen Huang | en |
| dc.date.accessioned | 2025-08-18T01:02:40Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Beguedou, E., Narra, S., Afrakoma Armoo, E., Agboka, K., & Damgou, M. K. (2023). Alternative Fuels Substitution in Cement Industries for Improved Energy Efficiency and Sustainability. Energies, 16(8), https://doi.org/10.3390/en16083533
Benhelal, E., Shamsaei, E., & Rashid, M. I. (2021). Challenges against CO2 abatement strategies in cement industry: A review. Journal of Environmental Sciences, 104, 84-101. https://doi.org/10.1016/j.jes.2020.11.020 Cankaya, S., & Pekey, B. (2019). A comparative life cycle assessment for sustainable cement production in Turkey. J Environ Manage, 249, 109362. https://doi.org/10.1016/j.jenvman.2019.109362 Çankaya, S., & Pekey, B. (2020). Application of scenario analysis for assessing the environmental impacts of thermal energy substitution and electrical energy efficiency in clinker production by life cycle approach. Journal of Cleaner Production, 270, 12.https://doi.org/10.1016/j.jclepro.2020.122388 El-Salamony, A.-H. R., Mahmoud, H. M., & Shehata, N. (2020). Enhancing the efficiency of a cement plant kiln using modified alternative fuel. Environmental Nanotechnology, Monitoring & Management, 14. https://doi.org/10.1016/j.enmm.2020.100310 Embaye, T. M., Ahmed, M. B., Dai, G., Bukhsh, K., Hu, Z., Magdziarz, A., Stojiljkovic, D., Manic, N., & Wang, X. (2023). Investigation of thermal behaviour and synergistic effect in co-pyrolysis of municipal solid waste and sewage sludge through thermogravimetric analysis. Journal of the Energy Institute, 111. https://doi.org/10.1016/j.joei.2023.101443 Fang, J., He, J., Hong, Y., Luo, Z., Ke, H., Fan, Z., Tang, O., Diao, Z., Chen, D., & Lingjun, K. (2023). Coupling effect of the refuse and sludge on the physical and combustible properties of the densified pellets for energy production. Renewable Energy, 216. https://doi.org/10.1016/j.renene.2023.119081 Ferronato, N., Giaquinta, C., Conti, F., & Torretta, V. (2024). When solid recovered fuel (SRF) production and consumption maximize environmental benefits? A life cycle assessment. Waste Manag, 178, 199-209. https://doi.org/10.1016/j.wasman.2024.02.029 Global Cement and Concrete Association(GCCA). (2024). Cement Industry Progress Report. Gebreslassie, M. G., Bahta, S. T., & Mihrete, A. S. (2023). Development of alternative fuel for cement industries: The case of Messebo cement factory in Ethiopia. Waste Management Bulletin, 1(3), 58-70. https://doi.org/10.1016/j.wmb.2023.07.003 Georgiopoulou, M., & Lyberatos, G. (2018). Life cycle assessment of the use of alternative fuels in cement kilns: A case study. Journal of Environmental Management, 216, 224-234. https://doi.org/10.1016/j.jenvman.2017.07.017 Hossain, M. U., Poon, C. S., Lo, I. M. C., & Cheng, J. C. P. (2017). Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resources Conservation and Recycling, 120, 199-208. https://doi.org/10.1016/j.resconrec.2016.12.012 International Energy Agency(IEA).(2018).Technology Roadmap Low Carbon Transition in the Cement Industry. I. E. Agency. Ige, O. E., Von Kallon, D. V., & Desai, D. (2024). Carbon emissions mitigation methods for cement industry using a systems dynamics model. Clean Technologies and Environmental Policy, 26(3), 579-597. https://doi.org/10.1007/s10098-023-02683-0 Intergovernmental Panel on Climate Change(IPCC). (2023). Emission Factor Database. Ishak, S. A., & Hashim, H. (2022). Effect of mitigation technologies on the total cost and carbon dioxide emissions of a cement plant under multi-objective mixed linear programming optimisation. Chemical Engineering Research and Design, 186, 326-349. https://doi.org/10.1016/j.cherd.2022.07.048 International Organization for Standardization(ISO).(2006).ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+:A New Life Cycle Impact Assessment Methodology. The International Journal of Life Cycle Assessment, 8, 324-330. Khan, M. M. H., Havukainen, J., & Horttanainen, M. (2020). Impact of utilizing solid recovered fuel on the global warming potential of cement production and waste management system: A life cycle assessment approach. Waste Management and Research, 39(4), 561-572. https://doi.org///0d.o1i.1o7rg7/1007.13147274/027X324029427X820797 Kookos, I. K., Pontikes, Y., Angelopoulos, G. N., & Lyberatos, G. (2011). Classical and alternative fuel mix optimization in cement production using mathematical programming. Fuel, 90(3), 1277-1284. https://doi.org/10.1016/j.fuel.2010.12.016 Kusuma, M. A., Nassour, A., Nelles, M., & Ragossnig, A. (2020). Potential utilization of commercial waste in Jakarta as alternative fuel by cement industry. Waste Management and Research,38(12). https://doi.org/https://doi.org/10.1177/0734242X20943279 Luo, Z. F., Song, H. T., Huang, Y. J., & Jin, B. S. (2024). Recent Advances on the Uses of Biomass Alternative Fuels in Cement Manufacturing Process: A Review. Energy & Fuels, 38(9), 7454-7479. https://doi.org/10.1021/acs.energyfuels.3c04535 Mulaudzi, L. (2017). Process modelling and economic evaluation of waste tyres to limonene via pyrolysis (Master’s thesis, Stellenbosch University). Pang, D., Mao, Y., Jin, Y., Song, Z., Wang, X., Li, J., & Wang, W. (2023). Review on the use of sludge in cement kilns: Mechanism, technical, and environmental evaluation. Process Safety and Environmental Protection, 172, 1072-1086. https://doi.org/10.1016/j.psep.2023.03.004 Park, D. K., & Song, E. (2017). Pressurized Pyrolysis Characteristics of Two Ranks of Coal in a Thermogravimetric Analyzer. Journal of Energy Engineering, 143(5). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000450 Pitre, V., La, H., & Bergerson, J. A. (2024). Impacts of alternative fuel combustion in cement manufacturing: Life cycle greenhouse gas, biogenic carbon, and criteria air contaminant emissions. Journal of Cleaner Production, 475, 11, Article 143717. https://doi.org/10.1016/j.jclepro.2024.143717 Sai Kishan, G., Himath kumar, Y., Sakthivel, M., Vijayakumar, R., & Lingeshwaran, N. (2021). Life cycle assesment on tire derived fuel as alternative fuel in cement industry. Materials Today: Proceedings, 47, 5483-5488. https://doi.org/10.1016/j.matpr.2021.07.472 Schakel, W., Hung, C. R., Tokheim, L.-A., Strømman, A. H., Worrell, E., & Ramírez, A. (2018). Impact of fuel selection on the environmental performance of post-combustion calcium looping applied to a cement plant. Applied Energy, 210, 75-87. https://doi.org/10.1016/j.apenergy.2017.10.123 Setiawan, A. (2022). The Life Cycle Assessment of Cement Product with Alternative Fuels Usage in Indonesia. Journal of Natural Resources and Environmental Management, 11(3), 474-489. https://doi.org/10.29244/jpsl.11.3.474-489 Sharma, P., Kukreja, K., Reddy, K.P.K., Mittal, A., Panda, D.K., Mohapatra, B. . (2023). Refuse Derived Fuel (RDF) Co-processing in Kiln Main Burner in a Cement Plant: A Case Study. . Advances in Clean Energy and Sustainability. https://doi.org/https://doi.org/10.1007/978-981-99-2279-6_28 Sharma, P., Sheth, P. N., & Mohapatra, B. N. (2023). Co-processing of petcoke and producer gas obtained from RDF gasification in a white cement plant: A techno-economic analysis. Energy, 265. https://doi.org/10.1016/j.energy.2022.126248 Siti Aktar Ishaka, b., ⁎, Haslenda Hashima,b. (2022). Effect of mitigation technologies on the total cost and carbon dioxide emissions of a cement plant under multi-objective mixed linear programming optimisation. Chemical Engineering Research and Design(186). Supriya, Chaudhury, R., Sharma, U., Thapliyal, P. C., & Singh, L. P. (2023). Low-CO2 emission strategies to achieve net zero target in cement sector. Journal of Cleaner Production, 417. https://doi.org/10.1016/j.jclepro.2023.137466 Tihin, G. L., Mo, K. H., Onn, C. C., Ong, H. C., Taufiq-Yap, Y. H., & Lee, H. V. (2023). Overview of municipal solid wastes-derived refuse-derived fuels for cement co-processing. Alexandria Engineering Journal, 84, 153-174. https://doi.org/10.1016/j.aej.2023.10.043 United States Environmental Protection Agency (U.S. EPA). (2025). GHG emission factors hub. Zhang, L. H., & Mabee, W. E. (2016). Comparative study on the life-cycle greenhouse gas emissions of the utilization of potential low carbon fuels for the cement industry. Journal of Cleaner Production, 122, 102-112. https://doi.org/10.1016/j.jclepro.2016.02.019 台灣水泥股份有限公司(2021)。《合併財務報告暨會計師查核報表》。 台灣水泥股份有限公司(2022)。《和平水泥廠計畫環境影響說明書—變更內容對照表》。 台灣水泥股份有限公司和平廠(2022年4月29日)。《台泥和平廠廢熱與廢冷回收技術應用案例》。 台灣區水泥工業同業公會(2024)。《年度水泥公會年報》。 吳宗德,郭子豪,張耀元,陳志賢,與王義基(2024)。《水泥窯 Dioxin 抑制生成機制及濃度檢討》。工業污染防治(160)。 林素貞,李學姰,李炳崑,呂鴻彬,與洪瑞均(2015)。《投入產出結合生命週期評估-以煉鋼業為例》。工業污染防治(131),183–199。 胡仕儀(2024)。《水泥產業淨零減碳作法及未來與石化產業合作契機》。產業評析。工研院產科國際所。 財政部南區國稅局(2014)。各行業別之原物料耗用通常水準調查報告(磚窯業)。https://reurl.cc/daDRXD 財政部(2025)。官務署關港貿單一窗口:統計資料庫。https://portal.sw.nat.gov.tw/APGA/GA30 高爾翔(2024)。《水泥工業中使用固體回收燃料作為混燒替代品的生命週期分析:以台灣東部某水泥廠為例》(碩士論文,國立宜蘭大學)。臺灣博碩士論文知識加值系統。宜蘭縣。https://hdl.handle.net/11296/faa7st 陳盈良,林健榮,施百鴻,張益國,與賴怡潔(2021)。《水泥窯作為資源循環中心評估專案計畫》。 黃泓維,與胡憲倫(2019)。《生命週期衝擊評估之新應用-自然資本評估》。工業污染防治(145)。 黃啟峰(2021)。《水泥業能源效率分析》。水泥業提升能源效率研討會。 經濟部地質調查及礦業管理中心(2025)。土石資源服務平台:砂石產銷。https://amis.mine.gov.tw/ 經濟部能源署(2012)。《水泥製造業應遵行之節約能源與能源效率指標規定》。 經濟部能源署(2025)。《能源統計月報》。 經濟部產業發展署(2024)。《中華民國112–113工業發展年鑑》。經濟部產業發展署。 劉毅弘,與潘子欽(2021)。《台灣水泥業單位產品能源使用分析》。燃燒季刊(114),61–74。https://doi.org/10.30041/CQ.202108_(114).0006 盧宗憲(2025)。《大宗資材價格趨勢分析》。財團法人臺灣營建研究院。 環境部。產品碳足跡資訊網。https://cfp-calculate.tw/cfpc/WebPage/index.aspx 環境部(2025)。《固體再生燃料(SRF)白皮書》。 環境部氣候變遷署(2019)。《溫室氣體排放係數管理表 6.0.4》。 環興科技股份有限公司(2024)。《113 年推動可燃事業廢棄物轉化再生能源專案工作計畫》。環境部資源循環署。 簡聰文,曾庭科,洪秋琪,孫偉碩,與廖昭傑(2024)。《環保管制對水泥廠空污排放之影響與因應》。燃燒季刊, 33, 1–14。https://doi.org/10.30041/CQ.202408_(126).0001 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98603 | - |
| dc.description.abstract | 隨著全球節能減碳與能源轉型趨勢加速推動,我國環境部於113年頒布「碳費徵收辦法」,促使年排放量超過2.5 萬噸二氧化碳當量的企業積極尋求低碳轉型策略。在工業部門之中,水泥業因高度仰賴化石燃料進行熟料煅燒,不僅為全球第三大工業能源消耗者,其碳排放亦佔全球總量約7%。水泥製程中約有40%的碳排來自燃燒煤炭、石油焦與天然氣,為當前水泥業環境衝擊熱點,為因應全球減碳趨勢,水泥業有尋求替代能源之急迫性。
本研究整合環境與經濟層面,探討水泥業在未來能源轉型以及碳費徵收情境下,最佳替代燃料配比策略。採用生命週期評估方法,分析各種類替代燃料應用於水泥製程對各項環境衝擊類別之相對表現,並進一步透過多目標線性規劃模型,優化燃料配比以同時最小化環境衝擊與燃料成本。模型情境考量熱值替代率、燃料許可條件、碳費費率與技術限制等多重參數,並以110年為基線,模擬包含水泥廠自主減量目標與碳費政策導入等多種未來情境。 研究結果釐清不同替代燃料種類衝擊熱點來源,在熱值替代率分別為25%、35%、50%之情境下,固體再生燃料綜合效益最佳;而污泥與廢輪胎燃料則受限於前處理衝擊與成本負擔。木材雖為現行主要替代燃料,惟因熱值偏低,未來競爭力可能受限。儘管研究結果顯示,透過減少產能可協助企業達成碳費優惠門檻 ,並最高可達86.05%熱值替代率,但此一策略可能降低水泥營收,為提升企業之低碳轉型韌性,建議企業於推動替代燃料應用時,應同步導入其他減碳技術措施,以兼顧環境永續目標與營運穩定性。本研究釐清水泥業替代燃料導入下之衝擊關鍵,亦可作為其他碳密集型產業採納替代燃策略之政策建議,研究成果有助於提升企業在碳費制度下的適應能力,並加速實現減碳目標與循環經濟之推動。 | zh_TW |
| dc.description.abstract | With the global acceleration of energy transition and decarbonization efforts, Taiwan's Ministry of Environment announced Regulations Governing the Collection of Carbon Fees in 2024, mandating enterprises emitting over 25,000 metric tons of CO₂-equivalent annually to actively pursue low-carbon transition strategies. Within the industrial sector, the cement industry remains highly dependent on fossil fuels for clinker production, making it the third-largest industrial energy consumer globally and contributing approximately 7% of total global CO₂ emissions. Notably, about 40% of emissions from cement production originate from the combustion of coal, petroleum coke, and natural gas, underscoring the urgency for the industry to adopt alternative energy sources in response to international decarbonization trends.
This study integrates environmental and economic considerations to investigate optimal alternative fuel blending strategies for the cement industry under future energy transition scenarios and carbon fee policies. A life cycle assessment (LCA) approach is employed to evaluate the relative environmental performance of various alternative fuels used in cement production, followed by the application of a multi-objective linear programming model to optimize fuel composition with the dual objectives of minimizing environmental impacts and fuel costs. The optimization model incorporates multiple parameters, including thermal substitution rate (TSR), fuel permit constraints, carbon fee rates, and technological limitations, using the year 2021 as the baseline. Multiple future scenarios are simulated, including voluntary emission reduction targets and carbon fee implementation. The results identify the environmental hotspots associated with different types of alternative fuels. Among the scenarios with TSR levels set at 25%, 35%, and 50%, solid recovered fuel (SRF) demonstrates the most favorable overall performance. In contrast, sludge and tire-derived fuel (TDF) face limitations due to high pre-treatment impacts and cost burdens. Although waste wood is currently the most widely used alternative fuel, its relatively low calorific value may hinder its future competitiveness. While reducing production can help enterprises qualify for carbon fee discounts—achieving up to 86.05% TSR—this strategy may also introduce financial risks. To enhance the resilience of low-carbon transitions, it is recommended that the adoption of alternative fuels be complemented by additional decarbonization measures, such as improving energy efficiency and implementing carbon capture, utilization, and storage (CCUS) technologies, thereby ensuring both environmental sustainability and operational stability. This study elucidates the key environmental impacts associated with the use of alternative fuels in cement production and provides policy implications for other carbon-intensive industries. The findings contribute to enhancing industry adaptability under carbon pricing mechanisms and accelerating progress toward decarbonization and circular economy goals. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:02:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:02:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 II
摘要 III Abstract IV 目 次 VI 圖 次 IX 表 次 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機及目的 2 1.3 研究架構 3 第二章 文獻回顧 5 2.1 水泥產業介紹 5 2.1.1 產業背景 5 2.1.2 製程概述與能源使用消耗 6 2.2 替代燃料 10 2.2.1 國內水泥窯爐替代燃料使用現況 11 2.2.2 替代燃料種類 13 2.2.3 替代燃料適用性與限制 18 2.3 國內碳費制度 23 2.4 生命週期評估 29 2.4.1 生命週期評估方法簡介 29 2.4.2 替代燃料應用於水泥廠之生命週期評估 31 2.5 多目標最佳化 33 2.5.1 數學規劃法 33 2.5.2 水泥業替代燃料配比最佳化之應用 34 第三章 研究方法 35 3.1 生命週期評估方法 35 3.1.1 目標與範疇界定 35 3.1.2 盤查分析 39 3.1.3 衝擊評估模式 49 3.2 以線性規劃進行替代燃料配比最佳化 50 3.2.1 情境設定 50 3.2.2 決策變數與參數定義 51 3.2.3 目標函數 52 3.2.4 限制條件 53 3.3 敏感度分析 55 第四章 結果與討論 57 4.1 生命週期評估結果57 4.1.1 燃料衝擊比較 57 4.1.2 熱點分析 63 4.2 多目標最佳化模型 68 4.2.1 各情境下燃料配比最佳化結果分析 68 4.2.2 燃料配比與溫室氣體排放、成本之關聯性 71 4.2.3 綜合探討與文獻比較 76 4.2.4 敏感度分析 81 第五章 結論與建議 85 5.1 結論 85 5.2 建議 87 參考文獻 89 附錄 96 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 波特蘭水泥 | zh_TW |
| dc.subject | 線性規劃 | zh_TW |
| dc.subject | 生命週期評估 | zh_TW |
| dc.subject | 碳費徵收 | zh_TW |
| dc.subject | 替代燃料 | zh_TW |
| dc.subject | carbon fee | en |
| dc.subject | alternative fuels | en |
| dc.subject | Portland cement | en |
| dc.subject | linear programming | en |
| dc.subject | life cycle assessment (LCA) | en |
| dc.title | 水泥業替代燃料減碳效益之綜合評估 | zh_TW |
| dc.title | Comprehensive Assessment of Carbon Reduction Through Alternative Fuel Use in the Cement Industry | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 馬鴻文;趙家緯 | zh_TW |
| dc.contributor.oralexamcommittee | Hwong-Wen Ma;Chia-Wei Chao | en |
| dc.subject.keyword | 波特蘭水泥,替代燃料,碳費徵收,生命週期評估,線性規劃, | zh_TW |
| dc.subject.keyword | Portland cement,alternative fuels,carbon fee,life cycle assessment (LCA),linear programming, | en |
| dc.relation.page | 104 | - |
| dc.identifier.doi | 10.6342/NTU202503412 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 8.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
