請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98596| 標題: | 物理訊息神經網路輔助擴展卡爾曼濾波器之設計與實現 Physics-Informed Neural Networks Assisted Extended Kalman Filter System Design and Implementation |
| 作者: | 林秉諭 Ping-Yu Lin |
| 指導教授: | 王立昇 Li-Sheng Wang |
| 關鍵字: | 數據導向,擴展卡爾曼濾波器,阿克曼轉向載具,物理訊息神經網路, Data-Driven,Extended Kalman Filter,Ackermann vehicle,Physics-Informed Neural Network, |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 本研究旨在設計並實現一套數據導向(Data-Driven)之系統狀態估測系統,應用於阿克曼(Ackermann)無人載具於戶外環境中的定位及定向。為解決阿克曼轉向機構的載具非線性模型不易掌握的問題,本研究進一步引入物理訊息神經網路(Physics-Informed Neural Networks0, PINN)輔助擴展卡爾曼濾波器(Extended Kalman Filter, EKF),透過學習車輛運動方程,融合GPS/GNSS 與IMU 資訊,有效估測車輛在戶外環境中的座標與朝向角,提升估測精度與穩定性。最終,引入動態節點擴張概念及線上即時學習修正類神經網路模型,整體系統融合數據導向方法與物理模型推導之優勢,實現具備自適應性、運動可行性與動態穩健性的戶外阿克曼載具定位與控制架構。 This study aims to design and implement a data-driven state estimation system for localization of Ackermann-type unmanned ground vehicles (UGVs) operating in outdoor environments. To address the challenges posed by the uncertain nonlinear dynamical model inherent to the Ackermann steering mechanism, a Physics-Informed Neural Network (PINN) is incorporated to enhance the performance of the Extended Kalman Filter (EKF). By learning the vehicle’s motion equations and fusing data from GPS/GNSS and inertial measurement units (IMUs), the proposed system effectively estimates the vehicle’s position and heading, thereby improving both the accuracy and stability of localization. To further adapt to real-world environmental dynamics and model uncertainties, this work introduces a dynamic node expansion strategy and an online learning mechanism for real-time model correction. The resulting framework leverages the complementary strengths of data-driven learning and physics-based modeling, enabling adaptive, physically feasible, and robust localization and control of outdoor Ackermann UGVs. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98596 |
| DOI: | 10.6342/NTU202501008 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2025-08-18 |
| 顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 14.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
