請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98594完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李雨 | zh_TW |
| dc.contributor.advisor | U Lei | en |
| dc.contributor.author | 鄭棋文 | zh_TW |
| dc.contributor.author | Chi-Wen Cheng | en |
| dc.date.accessioned | 2025-08-18T01:00:44Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | [1] Bird, R. B., Armstrong, R. C., & Hassager, O. (1987). Dynamics of polymeric liquids. Vol. 1: Fluid mechanics, 2nd ed., John Wiley & Sons.
[2] Bird, R. B. (2002). Transport phenomena. Appl. Mech. Rev., 55(1), R1-R4. [3] Shaqfeh, E. G. (1996). Purely elastic instabilities in viscometric flows. Annual Review of Fluid Mechanics, 28 , 129-185. [4] Yasuda, K. Y., Armstrong, R. C., & Cohen, R. E. (1981). Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheologica Acta, 20(2), 163-178. [5] Giesekus, H. (1982). A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. Journal of Non-Newtonian Fluid Mechanics, 11(1-2), 69-109. [6] Münstedt, H., et al. (2007). Rheological behaviour of fumed silica suspensions in epoxy resins. Rheologica Acta, 46, 927–935. [7] Kaye, A. (1963). A Bouncing Liquid Stream. Nature, 197, 1001-1002. [8] Groisman, A., & Steinberg, V. (2000). Elastic turbulence in a polymer solution flow. Nature, 405(6782), 53-55. [9] John, T. P., Poole, R. J., Kowalski, A., & Fonte, C. P. (2024). Viscoelastic flow asymmetries in a helical static mixer and their impact on mixing performance. Journal of Non-Newtonian Fluid Mechanics, 323, 105156. [10] Samanta, D., Dubief, Y., Holzner, M., Schäfer, C., Morozov, A. N., Wagner, C., & Hof, B. (2013). Elasto-inertial turbulence. Proceedings of the National Academy of Sciences, 110(26), 10557-10562. [11] Gan, H. Y., Lam, Y. C., & Nguyen, N. T. (2006). Polymer-based device for efficient mixing of viscoelastic fluids. Applied Physics Letters, 88(22). [12] Gan, H. Y., Lam, Y. C., Nguyen, N. T., Tam, K. C., & Yang, C. (2007). Efficient mixing of viscoelastic fluids in a microchannel at low Reynolds number. Microfluidics and Nanofluidics, 3, 101-108. [13] Bird, R. B., Curtiss, C. F., Armstrong, R. C., & Hassager, O. (1987). Dynamics of polymeric liquids, volume 2: Kinetic theory, 2nd ed., John Wiley & Sons. [14] Thakur, R. K., Vial, C., Nigam, K. D. P., Nauman, E. B., & Djelveh, G. (2003). Static mixers in the process industries—a review. Chemical engineering research and design, 81(7), 787-826. [15] Ghanem, A., Lemenand, T., Della Valle, D., & Peerhossaini, H. (2014). Static mixers: Mechanisms, applications, and characterization methods – A review. Chemical engineering research and design, 92(2), 205-228. [16] Baker, J. R. (1991). Motionless mixers stir up new uses. Chemical engineering progress, 87(6), 32-38. [17] Ramsay, J., Simmons, M. J. H., Ingram, A., & Stitt, E. H. (2016). Mixing performance of viscoelastic fluids in a Kenics KM in-line static mixer. Chemical Engineering Research and Design, 115, 310-324. [18] Liu, S., Hrymak, A. N., & Wood, P. E. (2006). Laminar mixing of shear thinning fluids in a SMX static mixer. Chemical Engineering Science, 61(6), 1753-1759. [19] Singh, M. K., Anderson, P. D., & Meijer, H. E. (2009). Understanding and optimizing the SMX static mixer. Macromolecular rapid communications, 30(4‐5), 362-376. [20] Goldshmid, J., Samet, M., & Wagner, M. (1986). Turbulent mixing at high dilution ratio in a Sulzer-Koch static mixer. Industrial & Engineering Chemistry Process Design and Development, 25(1), 108-116. [21] Laza, J. M., et al. (1998). Thermal scanning rheometer analysis of curing kinetic of an epoxy resin: 2. An amine as curing agent. Polymer, 40(1), 35–45. [22] Cervi, G., Pezzin, S. H., & Meier, M. M. (2017). Differential Scanning Calorimetry study on curing kinetics of diglycidyl ether of bisphenol A with amine curing agents for self-healing systems. Revista Matéria, 22(2), e-11850. [23] Lim, V., Hobby, A. M., McCarthy, M. J., & McCarthy, K. L. (2015). Laminar mixing of miscible fluids in a SMX mixer evaluated by magnetic resonance imaging (MRI). Chemical Engineering Science, 137, 1024-1033. [24] Michael, V., Dawson, M., Prosser, R., & Kowalski, A. (2022). Laminar flow and pressure drop of complex fluids in a Sulzer SMX+ TM static mixer. Chemical Engineering Research and Design, 182, 157-171. [25] 白翊宏. (2021). 靜態混合器內混合現象的數值研究. 臺灣大學應用力學研究所學位論文, 2021, 1-67. [26] 賴泓翰. (2022). 互溶/不互溶流體於靜態混合器中混合的數值研究. 臺灣大學應用力學研究所學位論文, 2022, 1-62. [27] 賴冠廷. (2023). 突縮流道內黏彈流體混合的數值研究. 臺灣大學應用力學研究所學位論文, 2023, 1-73. [28] 廖禹喨. (2024). 黏彈流體於靜態混合器中混合的數值研究. 臺灣大學應用力學研究所學位論文, 2024, 1-67 [29] Raghavan, S. R., & Khan, S. A. (1997). Shear-thickening response of fumed-silica suspensions under steady and oscillatory shear. Journal of Colloid and Interface Science, 185(1), 57–67. [30] Benchabane, A., & Bekkour, K. (2008). Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science, 286(10), 1173-1180. [31] COMSOL CFD Module User guide, Version 6.0, (2021). COMSOL Documentation. [32] Olsson, E. and G. Kreiss, “A Conservative Level Set Method for Two Phase Flow”, Journal of Computational Physics, Vol. 210, pp. 225–246, (2005). [33] Osher, S. and R. Fedkiw, “Level Set Methods: An Overview and Some Recent Results,” Journal of Computational Physics, Vol. 169, 463–502, (2001) [34] Sethian, J. A. and P. Smereka, “Level set methods for fluid interfaces,” Annual Review of Fluid Mechanics, Vol.35, 341-372, (2003). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98594 | - |
| dc.description.abstract | 本研究旨在探討兩股可產生化學交聯反應的非牛頓流體於靜態混合器中之混合行為,並以DGEBA(diglycidyl ether of bisphenol A,雙酚A型雙環氧基醚)為代表性流體(主劑),搭配混合於增稠液(聚丙二醇(PPG)為基底、添加10%氟化矽所形成之懸浮液)的TETA(三乙烯四胺,triethylenetetramine)作為固化劑,建立一套可同時模擬流體混合與交聯反應(DGEBA與TETA反應後由液態轉變為固態)的數值模型。
研究中採用 COMSOL Multiphysics 軟體,整合水平集法(Level Set Method)與化學反應模組,進行三維模擬計算,追蹤不同流體間界面變化並模擬交聯反應動力學,藉以分析不同混合器幾何設計下之混合效率與反應表現。混合效率的優劣常以變異係數(Coefficient of Variation, 简稱COV)表示,其值介於1與0之間,愈接近0者其效率愈高。本文共採用三種方式來估算COV值,分別是水平集函數、物種濃度c、及含化學反應的c,並分別稱為之COV、COVc、及COVc-Chem。透過對一含6個混合元件的慣用圓形截面SMX混合器,本文以DGEBA與含TETA的增稠液進行計算。在混合器入口截面上述三項COV值均為1,在出口截面上分别算得COV = 0.62、COVc = 0.17、及COVc-Chem = 0.11,因的計算只含對流效應、並未納入擴散效應,故以 COVc 及 COVc-Chem 較能反映混合行為、且化學反應有加強混合的效果。按計算結果,SMX 混合器能有效促進流體界面拉伸與折疊,提升整體混合效率、並使交聯反應更趨均勻。 本文亦對以下狀况進行了研究。如改變兩股待混合流體的黏度差異,本研究的計算顯示差異大者混合較佳。至於兩流體中反應物的當量比效應,以符合理論當量比者能獲致最佳混合;但若偏離理論值不大,其影響有限,此因混合器自具的混合能力明顯高於化學反應所促進者。比較方形與圓形截面混合器中的混合,以圓形截面者較優、固化程度亦較佳。 綜合而言,本研究成功建立了一套整合混合與化學交聯反應的數值模擬計算,並提供一種可量化比較不同混合器性能的方法。 | zh_TW |
| dc.description.abstract | The goal of this thesis is to study the mixing of two non-Newtonian fluids which could perform cross-linking chemical reaction (curing) in static mixer, and develop an associated numerical model for simulation. The DGEBA (diglycidyl ether of bisphenol A) and TETA (triethylenetetramine) suspended in shear-thickening fluid were chosen as the primary target fluids in this study. The COMSOL Multiphysics was employed, using the Level Set Method together with the chemical reaction module, for capturing the interface between two fluids and the curing process. The mixing efficiency was then studied for different geometries of the mixers. The mixing efficiency was characterized by the coefficient of variation (COV), and its value is between 1 and 0. Better mixing when COV is closer to zero. We have estimated three values for COV, based on the level-set function (), the concentration of selected species (c), and the concentration under chemical reaction, and are called COV, COVc, and COVc-Chem, respectively. Through the simulation of DGEBA and TETA in shear-thickening fluid in a general SMX mixer with circular cross section and 6 mixing elements, we found COV = 0.62, COVc = 0.17, and COVc-Chem = 0.11 at the exit plane, with the corresponding values equal 1 at the inlet of the mixer. Also, average degree of cure reaches 0.6 at the exit plane. COV is not so adequate for characterizing the mixing as the calculation of accounts only the convection without diffusion. Thus, COVc and COVc-Chem are more appropriate for studying mixing, and mixing is enhanced via chemical reaction. According to the calculation, the interface between those two fluids for mixing are stretched and folded through the design geometry of mixer, and thus mixing is enhanced and more curing occurs.
Some findings concerning mixing are obtained through the present study. Mixing is enhanced when the viscosity contrast between those two fluids is increased. Mixing is optimized when the molar amounts of reactants are at their theoretical equivalent ratio. Mixing and degree of cure in mixer with circular cross section is better than those with square cross section. In summary, a numerical model for simulation is developed successfully for accessing mixing and curing of two non-Newtonian fluids in static mixer. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:00:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:00:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
序言 i 摘要 iii ABSTRACT v 目次 vii 圖次 ix 表次 xii 符號說明 xiii 第一章 - 緒論 1 1.1 簡介 - 黏彈流體 1 1.2 簡介 - 靜態混合器 3 1.3 文獻回顧 6 1.4 研究動機 14 第二章 - 理論模型 16 2.1 物理模型與基本假設 16 2.1.1 SMX靜態混合器 16 2.1.2 基本假設 18 2.2 流體性質 19 2.2.1 流體模型 19 2.3 流體力學 21 2.3.1 流場 21 2.3.2 水平集法 22 2.4 化學反應機理與建模方法 23 2.4.1反應機理 24 2.4.2 反應動力學模型 25 2.4.3 含化學反應的質量傳輸方程式 25 2.4.4 固化程度(α)之定義與計算公式 26 2.4.5 參數設定與模擬考量 28 2.4.6 物理性質的設定與考量 28 2.5 流體混合模擬方法之比較 29 2.6 混合評估指標 30 2.7 初始條件 32 2.8 COMSOL計算軟體 33 第三章 - 結果與討論 34 3.1 網格設定與數值穩定性驗證 35 3.1.1 幾何剖分與網格設定 36 3.1.2 時間步長與界面追蹤設定 39 3.1.3 數值收斂與容錯設定 39 3.2 不同模擬方法與混合系統對混合效率之影響分析 40 3.3 不同流體黏度比對 48 3.4 當量比對混合效率與固化程度(α)之影響分析 52 3.5 方形截面與圓形截面混合器的比較 58 第四章 - 結論與未來展望 63 參考文獻 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 混合效率 | zh_TW |
| dc.subject | SMX靜態混合器 | zh_TW |
| dc.subject | 交聯反應 | zh_TW |
| dc.subject | 水平集法 | zh_TW |
| dc.subject | 黏彈流體 | zh_TW |
| dc.subject | viscoelastic fluid | en |
| dc.subject | curing | en |
| dc.subject | level set method | en |
| dc.subject | mixing efficiency | en |
| dc.subject | SMX static mixer | en |
| dc.title | 以水平集法研究具化學反應的兩種黏彈流體間的混合行為 | zh_TW |
| dc.title | Numerical study of the mixing of two viscoelastic fluids with chemical reaction using level set method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 田華忠;雷顯宇 | zh_TW |
| dc.contributor.oralexamcommittee | Hua-Chung Tien;Hsien-Yu Lei | en |
| dc.subject.keyword | SMX靜態混合器,黏彈流體,水平集法,交聯反應,混合效率, | zh_TW |
| dc.subject.keyword | SMX static mixer,viscoelastic fluid,level set method,curing,mixing efficiency, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202503597 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
