Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物產業傳播暨發展學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98593
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭立沛zh_TW
dc.contributor.advisorLi-Pei Pengen
dc.contributor.author黃浤洋zh_TW
dc.contributor.authorHung-Yang Huangen
dc.date.accessioned2025-08-18T01:00:32Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citationAhmed, S., & Stepp, J. R. (2013). Pu-erh tea: Botany, production and chemistry (pp. 59–71). In Tea in Health and Disease Prevention. Academic Press.
Brossard, N., Cai, H., Osorio, F., Bordeu, E., & Chen, J. (2016). “Oral” tribological study on the astringency sensation of red wines. Journal of Texture Studies, 47(5), 392–402.
Cao, Q. Q., Fu, Y. Q., Liu, Y. Y., Qin, Y., Chen, J. X., Yin, J. F., & Xu, Y. Q. (2022). A targeted and nontargeted metabolomics study on the oral processing of epicatechins from green tea. Food Chemistry, 378, 132129.
Chen, Q., Shi, J., Mu, B., Chen, Z., Dai, W., & Lin, Z. (2020). Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Food Chemistry, 332, 127412.
Chen, Q., Zhao, J., Zhang, H., & Wang, X. (2006). Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration. Analytica Chimica Acta, 572(1), 77–84.
Chen, R., Sun, L., Zhang, S., Li, Q., Wen, S., Lai, X., & Sun, S. (2024). Mechanisms and quality variations of nonvolatile and volatile metabolites in black tea from various ages of tea trees: Insights from metabolomics analysis. Food Chemistry: X, 22, 101470.
Ciraj, A. M., Sulaim, J., Mamatha, B., Gopalkrishna, B. K., & Shivananda, P. G. (2001). Antibacterial activity of black tea (Camellia sinensis) extract against Salmonella serotypes causing enteric fever. Indian Journal of Medical Sciences, 55(7), 376–381.
Devkota, H. P., Gaire, B. P., Hori, K., Subedi, L., Adhikari-Devkota, A., Belwal, T., Paudel, K. R., Jha, N. K., Singh, S. K., Chellappan, D. K., Hansbro, P. M., Dua, K., & Kurauchi, Y. (2021). The science of matcha: Bioactive compounds, analytical techniques and biological properties. Trends in Food Science & Technology, 118, 735–743.
Devos, R. J., Barth, C. de A., Dettmer, A., Bertolin, T. E., & Colla, L. M. (2021). Pu erh tea: Fermentative process as a potentialized of sensory aspects and bioactive profile – A review. Research, Society and Development, 10(8), e3510816999.
Ebeler, S. E., & Jung, D.-M. (2004). Effect of polyphenol compounds on the headspace volatility of flavors. American Journal of Enology and Viticulture, 55(1), 13–21.
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2015). Scientific opinion on the safety of caffeine. EFSA Journal, 13(5), 4102.
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2018). Safety of green tea catechins. EFSA Journal, 16(4), e05239.
Fang, S., Huang, W., Yang, T., Pu, L., Ma, Y., Zhu, X., Pan, K., & Fang, W. (2024). Ancient tea plants black tea taste determinants and their changes over manufacturing processes. LWT – Food Science and Technology, 193, 115750.
Feng, L., Liu, P., Zheng, P., Zhang, L., Zhou, J., Gong, Z., & Wan, X. (2020). Chemical profile changes during pile fermentation of Qingzhuan tea affect inhibition of α-amylase and lipase. Scientific Reports, 10, 3489.
Ge, Y., Li, N., Fu, Y., Yu, X., Xiao, Y., Tang, Z., Xiao, J., Wu, J.-L., & Jiang, Z.-H. (2021). Deciphering superior quality of Pu-erh tea from thousands of years’ old profile. Food Chemistry, 358, 129602.
Gong, J., Wang, Q., Sirisansaneeyakul, S., & McElhatton, A. (2016). Yunnan Pu-erh tea. In Tea in Health and Disease Prevention (pp. 175–197). Springer.
Guo, J., Yu, Z., Liu, M., Guan, M., Ai, S., Hu, Y., Li, S., Ren, D., & Liu, Y. (2023). Investigation on the volatiles and aromatic characteristic of raw Pu-erh tea with different storage durations by headspace solid-phase microextraction combined with gas chromatography–mass spectrometry and odor activity value analysis. Research Square.
Ho, C. T., Zheng, X., & Li, S. (2015). Tea aroma formation. Food Science and Human Wellness, 4(1), 9–27.
Hu, W., Wang, G., Lin, S., Liu, Z., Wang, P., Li, J., Zhang, Q., & He, H. (2022). Digital evaluation of aroma intensity and odor characteristics of tea with different types—Based on OAV splitting method. Foods, 11(15), 2204.
Kochman, J., Jakubczyk, K., Antoniewicz, J., Mruk, H., & Janda, K. (2020). Health benefits and chemical composition of matcha green tea: A review. Molecules, 26(1), 85.
Kong, W., Kong, X., Xia, Z., Li, X., Wang, F., Shan, R., ... & Chen, C. (2025). Genomic analysis of 1,325 Camellia accessions sheds light on agronomic and metabolic traits for tea plant improvement. Nature Genetics, 1–11.
Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013, 162750.
Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food: Principles and practices (2nd ed.). Springer.
Lin, Y. H., Wang, C. C., & Chen, B. H. (2021). Preparation of catechin nanoemulsion from oolong tea leaf waste and its inhibition of prostate cancer cells DU 145 and tumors in mice. Molecules, 26(11), 3260.
Lu, H. (2011). Resources, value and agricultural heritage characteristics of the ancient tea plant in the Middle and Lower Reaches of the Lancang River. Resources Science.
Lv, H. P., Zhang, Y., Shi, J., & Lin, Z. (2017). Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies. Food Research International, 100, 486–493.
Lv, H., Zhang, Y., Lin, Z., & Liang, Y.-R. (2013). Processing and chemical constituents of Pu-erh tea: A review. Food Research International, 53(2), 608–618.
Liang, Z., Leonard, W., Zhang, P., Zeng, X.-A., & Fang, Z. (2024). Catechins and caffeine absorption, and antioxidant activity of tea-macerated wine in a Caco-2 intestinal cell culture model. Journal of Food Science, 89(7), 4450–4468.
Ma, B., Wang, J., Xu, C., Wang, Z., Yin, D., Zhou, B., & Ma, C. (2022). Interrelation analysis between phenolic compounds and in vitro antioxidant activities in Pu-erh tea. LWT, 158, 113117.
Ma, L., Gao, M., Hu, J., Tong, W., Du, L., Yu, A., Huang, J., Li, J., & He, R. (2021). Characterization of the key active aroma compounds in Pu-erh tea using gas chromatography–time of flight/mass spectrometry–olfactometry combined with five different evaluation methods. European Food Research and Technology.
Ma, Y., Duan, S., Zhang, D., Su, X., Zhang, D., Lv, C., & Zhao, M. (2017). Microbial succession and the dynamics of chemical compounds during the solid-state fermentation of Pu-erh tea. Applied Sciences, 7(2), 166.
Maeda, M. (2003). Gallocatechin gallate-containing composition [Patent]. US Patent US20060134286A1.
Narukawa, M., Kimata, H., Noga, C., & Watanabe, T. (2010). Taste characteristics of catechins in tablet tea. International Journal of Food Science and Technology, 45(8), 1579–1585.
Narukawa, M., Toda, Y., Nakagita, T., Hayashi, Y., & Misaka, T. (2014). Theanine elicits umami taste via the T1R1 + T1R3 umami taste receptor. Amino Acids, 46(6), 1583–1587.
Nian, B., Chen, L., Yi, C., Shi, X., Jiang, B., Jiao, W., ... & Zhao, M. (2019). A high performance liquid chromatography method for simultaneous detection of 20 bioactive components in tea extracts. Electrophoresis, 40(21), 2837–2844.
Pan, S. Y., Nie, Q., Tai, H. C., Song, X. L., Tong, Y. F., Zhang, L. J. F., ... & Liang, C. (2022). Tea and tea drinking: China’s outstanding contributions to mankind. Chinese Medicine, 17, 27.
Pedro, A. C., Maciel, G. M., Ribeiro, V. R., & Haminiuk, C. W. I. (2020). Fundamental and applied aspects of catechins from different sources: A review. International Journal of Food Science and Technology, 55(2), 429–442.
Phenolic compounds in tea: Phytochemical, biological, and therapeutic applications. (2022). Biochemistry.
Ren, Y., Hou, Y., Granato, D., Zha, M., Xu, W., & Zhang, L. (2022). Metabolomics, sensory evaluation, and enzymatic hydrolysis reveal the effect of storage on the critical astringency-active components of crude Pu-erh tea. Journal of Food Composition and Analysis, 107, 104387.
Rossetti, D., Yakubov, G. E., Stokes, J. R., Williamson, A. M., & Fuller, G. G. (2008). Interaction of human whole saliva and astringent dietary compounds investigated by interfacial shear rheology. Food Hydrocolloids, 22(6), 1068–1078.
Stewart, A. J., Mullen, W., & Crozier, A. (2005). On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in green and black tea. Molecular Nutrition & Food Research, 49(1), 52–60.
Stone, H., & Sidel, J. L. (2004). Sensory evaluation introduction (pp. 1–19).
Tao, X., & LiPing, G. (2009). Advances in biosynthesis pathways and regulation of flavonoids and catechins. CAB Abstracts, 2899–2908.
Thorngate III, J. H., & Noble, A. C. (1995). Sensory evaluation of bitterness and astringency of 3R (−)-epicatechin and 3S (+)-catechin. Journal of the Science of Food and Agriculture, 67(4), 531–535.
Tian, W. (2015). Preparation process of wild ancient tree black tea. [Journal name missing].
Varela, P., & Ares, G. (2012). Novel techniques in sensory characterization and consumer profiling. CRC Press.
Vignes, M., Maurice, T., Lanté, F., Nedjar, M., Thethi, K., Guiramand, J., & Récasens, M. (2006). Anxiolytic properties of green tea polyphenol (−)-epigallocatechin gallate (EGCG). Brain Research, 1110(1), 102–115.
Wang, T., An, J., Bo, N., Li, R., Chen, Q., Sha, G., ... & Zhao, M. (2024). Changes and metabolic mechanisms of organic acids in the fermentation of Pu-erh tea. LWT – Food Science and Technology, 203, 116304.
Wang, T., Li, R. Y., Liu, K. Y., Chen, Q. Y., Bo, N. G., Wang, Q., ... & Zhao, M. (2023). Changes in sensory characteristics, chemical composition and microbial succession during fermentation of ancient plants Pu-erh tea. Food Chemistry: X, 20, 101003.
Xu, G. (2014). An overview on the research of ancient tea tree. Tea Communication.
Xu, Y. Q., Zhang, Y. N., Chen, J. X., Fang, W., Du, Q., & Yin, J. F. (2018). Quantitative analyses of the bitterness and astringency of catechins from green tea. Food Chemistry, 258, 16–24.
Ye, J. H., Ye, Y., Yin, J. F., Jin, J., Liang, Y. R., Liu, R. Y., ... & Xu, Y. Q. (2022). Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends in Food Science & Technology, 123, 130–143.
Yin, J. F., Zhang, Y. N., Du, Q. Z., Chen, J. X., Yuan, H. B., & Xu, Y. Q. (2014). Effect of Ca²⁺ concentration on the tastes from the main chemicals in green tea infusions. Food Research International, 62, 941–946.
Yang, G., Wang, X., Li, Y., Xie, J., & Lv, C. (2016). Study on soil nutrients and tea quality of ancient tea arboretum and modern terrace tea garden in Jingmai Mountain. [Journal name missing].
Yang, G., Zhou, D., Wan, R., et al. (2022). HPLC and high-throughput sequencing revealed higher tea-leaves quality, soil fertility and microbial community diversity in ancient tea plantations: Compared with modern tea plantations. BMC Plant Biology, 22, 239.
Yi, T., Zhu, L., Peng, W. L., He, X. C., Chen, H. L., Li, J., ... & Chen, H. B. (2015). Comparison of ten major constituents in seven types of processed tea using HPLC-DAD-MS followed by principal component and hierarchical cluster analysis. LWT – Food Science and Technology, 62(1), 194–201.
Yu, Y., Feng, X., Blank, I., Wang, H., Zhu, Y., Liu, Z., Ni, L., Lin, C. C., Wang, K., & Liu, Y. (2025). A review of umami taste of tea: Substances, perception mechanism, and physiological measurement prospects. Trends in Food Science & Technology, 162, 105082.
Zhang, H., Li, Y., Lv, Y., Jiang, Y., Pan, J., Duan, Y., ... & Zhang, S. (2017). Influence of brewing conditions on taste components in Fuding white tea infusions. Journal of the Science of Food and Agriculture, 97(9), 2826–2833.
Zhang, L., Cao, Q. Q., Granato, D., Xu, Y. Q., & Ho, C. T. (2020). Association between chemistry and taste of tea: A review. Trends in Food Science & Technology, 101, 139–149.
Zhang, L., Zhang, Z. Z., Zhou, Y. B., Ling, T. J., & Wan, X. C. (2013). Chinese dark teas: Postfermentation, chemistry and biological activities. Food Research International, 53(2), 600–607.
Zhang, S., Liu, W., Cheng, X., Wang, Z., Yuan, F., Wu, W., & Liao, S. (2022). Evaluating the productivity of ancient Pu’er tea trees (Camellia sinensis var. assamica): A multivariate modeling approach. Plant Methods, 18(1).
Zhang, Y., Zhang, Z., Liu, F., & Chen, X. (2025). An efficient and safe rapid aging technology for Pu’er raw tea. Journal of Food Processing and Preservation, 49(3), e16724.
國際標準化組織(ISO)。(2019)。ISO 3103:2019 茶葉感官檢驗用茶湯製備方法。日內瓦:國際標準化組織。
農業部茶及飲料作物改良場(2024)。臺灣茶風味輪與感官品評指引。行政院農業部茶及飲料作物改良場。
徐建、魏玉、李芳、翁曉、魏曉(2022)。真菌群落調控與普洱茶品質形成及安全控制。食品科學與食品安全綜合評論,21(6),4546–4572。
顏千淇(2015)。普洱茶推廣之研究(碩士論文)。靜宜大學管理碩士在職專班。臺灣博碩士論文知識加值系統。
蔣會兵、田易萍、陳林波、梁名志(2013)。雲南茶樹地方品種農藝性狀與品質性狀遺傳多樣性分析。《植物遺傳資源學報》,14(4),634–640。
羅洪波(主編),普洱雜誌社(編著)。(2020)。熟茶:一片茶葉的蝶變與升華。中國林業出版社。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98593-
dc.description.abstract本研究以百福藏倉所提供之三款不同樹齡古樹普洱茶樣品為對象,探討不同茶樹樹齡在功能性化學成分與感官品質表現之差異性。研究方法結合高效液相層析(HPLC)分析與結構化感官品評,針對表沒食子兒茶酚沒食子酸、表沒食子兒茶酚、表兒茶酚沒食子酸、表兒茶酚、沒食子兒茶素沒食子酸酯與咖啡因等六項功能性指標成分進行定量分析,並從香氣、口味與口感三大構面進行感官評估,進一步建構內含成分與感官品評之對應關係。研究結果顯示,茶樹樹齡與茶葉內含物組成存在明確結構差異。低樹齡樣本中酯型兒茶素(如EGCG、ECG)與咖啡因濃度相對較高,表現出較強的苦澀感與湯體厚重特徵;而高樹齡樣本則轉向以非酯型兒茶素(如EGC、EC)為主,對應明顯提升的滑順度、濃稠度與細緻度,呈現出層次更為平衡且協調的風味特徵,相較之下,香氣與口味構面未呈現穩定對應關係。此外,三款古樹普洱樣本之EGCG與咖啡因濃度普遍高於文獻所報導之多數市售普洱與綠茶樣品,反映古茶樹長期次生代謝所形成之功能性成分累積潛力。雖於高濃度沖泡條件下(如實驗萃取與感官品評應用)可能接近歐盟食品安全局所建議之每日攝取上限,惟日常飲用情境中所採用之沖泡比例與飲用頻率遠低於實驗條件,實際攝取量難以構成超標風險。本研究證實茶樹樹齡確實影響普洱茶之成分結構與感官表現,並指出非酯型兒茶素為口感品質提升之關鍵成分。建議未來產品開發可結合標準化沖泡建議與科學溝通策略,以強化其功能性價值定位,並確保使用安全性。此發現有助於釐清古樹茶品質形成機制,並可作為未來品質評估、產品開發與消費教育之科學基礎。zh_TW
dc.description.abstractThis study investigated the differences in functional chemical composition and sensory performance of Pu-erh tea derived from ancient tea trees of varying ages, using three representative samples provided by Baifu Cangcang. Six key bioactive compounds, namely EGCG, EGC, ECG, EC, GCG, and caffeine, were quantified through high-performance liquid chromatography (HPLC). In addition, a structured sensory evaluation was conducted encompassing three sensory dimensions: aroma, taste, and mouthfeel. The primary objective was to explore the influence of tree age on tea quality by examining the correlations between chemical composition and sensory attributes.
The results revealed a distinct structural differentiation in chemical composition associated with tree age. Samples collected from younger trees, approximately 300 years old, exhibited higher concentrations of ester-type catechins such as EGCG and ECG, along with caffeine. These chemical profiles corresponded to more pronounced bitterness and a heavier, more astringent mouthfeel. Conversely, samples from older trees, aged over 1,000 years, showed a compositional shift toward non-ester-type catechins, such as EGC and EC. These compounds were positively associated with greater smoothness, viscosity, and delicacy, resulting in a more balanced and harmonious flavor profile. Among the three evaluated sensory dimensions, only mouthfeel demonstrated a stable and consistent correlation with the chemical composition. In contrast, aroma and taste appeared to be influenced by volatile compounds or processing factors, lacking systematic associations with the quantified components.
Moreover, the concentrations of EGCG and caffeine in all three ancient tea samples were generally higher than the values reported in the literature for most commercial Pu-erh and green tea products. This observation suggests a potential accumulation advantage of bioactive compounds resulting from prolonged secondary metabolism in ancient tea trees. Although the high-concentration testing conditions may approach the daily intake limits established by the European Food Safety Authority (EFSA), typical drinking scenarios involving lower infusion ratios and consumption frequency are unlikely to pose excessive intake risks.
This study affirms that the age of tea trees significantly influences both the chemical composition and the sensory expression of Pu-erh tea. In particular, non-ester-type catechins were identified as major contributors to improved mouthfeel quality. These findings provide a scientific basis for future quality assessment, standardization of sensory indicators, and the development of evidence-based brewing recommendations. Furthermore, the integration of compound profiling with consumer-facing communication strategies may help enhance the perceived value, safety, and acceptance of ancient tree Pu-erh tea in contemporary markets.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:00:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:00:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員審定書 i
謝誌 ii
中文摘要 iv
Abstract v
目次 vii
圖次 ix
表次 x
第一章緒論 1
第一節 研究背景 1
第二節 研究動機與目的 2
第三節 章節架構 4
第二章 文獻探討 5
第一節 普洱茶介紹 5
一、 普洱茶的特色 5
二、 普洱茶種類 6
三、 普洱茶樹種分類 7
四、 普洱茶的感受特質 8
第二節 茶葉中之化學成分 9
一、 表沒食子兒茶酚沒食子酸(EpigallocatEChin gallate,簡稱 EGCG) 11
二、 表沒食子兒茶酚(EpigallocatEChin,簡稱 EGC) 11
三、 表兒茶酚沒食子酸(EpicatEChin gallate,簡稱 ECG) 12
四、 表兒茶酚(EpicatEChin,簡稱 EC) 12
五、 沒食子兒茶素沒食子酸酯(GallocatEChin gallate,簡稱 GCG) 12
六、 咖啡因(Caffeine) 13
第三節 感官品評 15
第三章 研究方法 20
第一節 分析架構 20
第二節茶品選擇與樣本 25
第三節 實驗室法 30
第四節 問卷設計方法與資料收集 33
一、 感官評估構面與設計原則 33
二、 問卷結構與內容設計 35
三、 資料收集程序與實施說明 35
第四章 感官與成分對照分析 37
第一節 感官品評結果概述 37
第二節 內含物分析結果概述 44
第三節 樹齡與茶品風味關聯 54
第四節 感官品評與內含物關聯性 58
第五章 結論與建議 72
第一節 結論 72
第二節 研究限制 74
第三節 未來研究建議 75
參考文獻 77
附錄一 問卷 85
附錄二 茶樹照片使用同意書 87
-
dc.language.isozh_TW-
dc.subject茶樹樹齡zh_TW
dc.subject古樹普洱茶zh_TW
dc.subject成分與口感關聯性zh_TW
dc.subject茶葉內含物分析zh_TW
dc.subject感官品質分析zh_TW
dc.subjectAncient Pu-erh Teaen
dc.subjectSensory Quality Evaluationen
dc.subjectTea Tree Ageen
dc.subjectCorrelation Between Chemical Composition and Mouthfeelen
dc.subjectChemical Composition Analysis of Tea Leavesen
dc.title古樹普洱茶的功能成分與感官品評之研究zh_TW
dc.titleA Study on Functional Constituents and Sensory Characteristics of Ancient Tree Puerh Teaen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor潘敏雄zh_TW
dc.contributor.coadvisorMin-Hsiung Panen
dc.contributor.oralexamcommittee王俊豪;王維民;王志文zh_TW
dc.contributor.oralexamcommitteeJun-Hao Wang;Wei-Min Wang;Zhi-Wen Wangen
dc.subject.keyword古樹普洱茶,茶樹樹齡,感官品質分析,茶葉內含物分析,成分與口感關聯性,zh_TW
dc.subject.keywordAncient Pu-erh Tea,Sensory Quality Evaluation,Chemical Composition Analysis of Tea Leaves,Correlation Between Chemical Composition and Mouthfeel,Tea Tree Age,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202502926-
dc.rights.note未授權-
dc.date.accepted2025-08-11-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物產業傳播暨發展學系-
dc.date.embargo-liftN/A-
顯示於系所單位:生物產業傳播暨發展學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved