Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98591
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟zh_TW
dc.contributor.advisorChung-Chih Wuen
dc.contributor.author趙珮伶zh_TW
dc.contributor.authorPei-Ling Chaoen
dc.date.accessioned2025-08-18T01:00:04Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation[1] Xiao, L., Chen, Z., Qu, B., Luo, J., Kong, S., Gong, Q., & Kido, J. (2011). Recent progresses on materials for electrophosphorescent organic light‐emitting devices. Advanced Materials, 23(8), 926–952.
[2] Khalifa, M. B., Mazzeo, M., Maiorano, V., et al. (2008). Efficient red phosphorescent organic light emitting diodes with double emission layers. Journal of Physics D: Applied Physics, 41(15), 155111.
[3] Helfrich, W., & Schneider, W. G. (1965). Recombination radiation in anthracene crystals. Physical Review Letters, 14(7), 229.
[4] Tang, C. W., & VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51(12), 913–915.
[5] Burroughes, J. H., Bradley, D. D. C., Brown, A. R., et al. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347(6293), 539–541.
[6] Burrows, P. E., Gu, G., Bulovic, V., Shen, Z., Forrest, S. R., & Thompson, M. E. (1997). Achieving full-color organic light-emitting devices for lightweight, flat-panel displays. IEEE Transactions on Electron Devices, 44(8), 1188–1203.
[7] Bizzarri, C., Spuling, E., Knoll, D. M., Volz, D., & Bräse, S. (2018). Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coordination Chemistry Reviews, 373, 49–82.
[8] Hong, G., Gan, X., Leonhardt, C., Zhang, Z., Seibert, J., Busch, J. M., & Bräse, S. (2021). A brief history of OLEDs—Emitter development and industry milestones. Advanced Materials, 33(9), 2005630.
[9] Samaeifar, F., Yu, H., Davidson-Hall, T., Sadeghianlemraski, M., Chung, D. S., & Aziz, H. (2021). Host-to-guest energy transfer and its role in the lower stability of solution-coated versus vacuum-deposited phosphorescent OLEDs. The Journal of Physical Chemistry C, 125(36), 20094–20103.
[10] Geffroy, B., Le Roy, P., & Prat, C. (2006). Organic light‐emitting diode (OLED) technology: Materials, devices and display technologies. Polymer International, 55(6), 572–582.
[11] Hung, L. S., Tang, C. W., & Mason, M. G. (1997). Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 70(2), 152–154.
[12] Heil, H., Steiger, J., Karg, S., Gastel, M., Ortner, H., von Seggern, H., & Stößel, M. (2001). Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode. Journal of Applied Physics, 89(1), 420–424.
[13] Jin, Y. D., Ding, X. B., Reynaert, J., Arkhipov, V. I., Borghs, G., Heremans, P. L., & Van der Auweraer, M. (2004). Role of LiF in polymer light-emitting diodes with LiF-modified cathodes. Organic Electronics, 5(6), 271–281.
[14] Baldo, M. A., O’Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., & Forrest, S. R. (2023). Highly efficient phosphorescent emission from organic electroluminescent devices. In Electrophosphorescent Materials and Devices (pp. 1–11). Jenny Stanford Publishing.
[15] Bochkarev, M. N., Katkova, M. A., Ilichev, V. A., & Konev, A. N. (2008). New cathode materials for organic light-emitting diodes: Tm:Yb and Eu:Yb. Nanotechnologies in Russia, 3(7), 470–473.
[16] He, Y., Cheng, N., Xu, X., Fu, J., & Wang, J. A. (2019). A high efficiency pure organic room temperature phosphorescence polymer PPV derivative for OLED. Organic Electronics, 64, 247–251.
[17] Uoyama, H., Goushi, K., Shizu, K., Nomura, H., & Adachi, C. (2012). Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 492(7428), 234–238.
[18] Bauri, J., Choudhary, R. B., & Mandal, G. (2021). Recent advances in efficient emissive materials-based OLED applications: A review. Journal of Materials Science, 56(34), 18837–18866.
[19] Baryshnikov, G., Minaev, B., & Ågren, H. (2017). Theory and calculation of the phosphorescence phenomenon. Chemical Reviews, 117(9), 6500–6537.
[20] Dias, F. B., Bourdakos, K. N., Jankus, V., et al. (2013). Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Advanced Materials, 25(27), 3707–3714.
[21] Chen, C. T. (2004). Evolution of red organic light-emitting diodes: Materials and devices. Chemistry of Materials, 16(23), 4389–4400.
[22] Cummings, S. D., & Eisenberg, R. (1996). Tuning the excited-state properties of platinum(II) diimine dithiolate complexes. Journal of the American Chemical Society, 118(8), 1949–1960.
[23] Ho, C. L., Li, H., & Wong, W. Y. (2014). Red to near-infrared organometallic phosphorescent dyes for OLED applications. Journal of Organometallic Chemistry, 751, 261–285.
[24] Xiao, Y., Wang, H., Xie, Z., et al. (2022). NIR TADF emitters and OLEDs: Challenges, progress, and perspectives. Chemical Science, 13(31), 8906–8923.
[25] dos Santos, P. L., Stachelek, P., Takeda, Y., & Pander, P. (2024). Recent advances in highly-efficient near infrared OLED emitters. Materials Chemistry Frontiers, 8(7), 1731–1766.
[26] Bünzli, J. C. G., & Eliseeva, S. V. (2010). Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. Journal of Rare Earths, 28(6), 824–842.
[27] Vasilopoulou, M., Fakharuddin, A., García de Arquer, F. P., et al. (2021). Advances in solution-processed near-infrared light-emitting diodes. Nature Photonics, 15(9), 656–669.
[28] Englman, R., & Jortner, J. (1970). The energy gap law for radiationless transitions in large molecules. Molecular Physics, 18(2), 145–164.
[29] Wei, Y. C., Wang, S. F., Hu, Y., Liao, L. S., Chen, D. G., Chang, K. H., et al. (2020). Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nature Photonics, 14(9), 570–577.
[30] Suman, G. R., Pandey, M., & Chakravarthy, A. J. (2021). Review on new horizons of aggregation induced emission: From design to development. Materials Chemistry Frontiers, 5(4), 1541–1584.
[31] Mei, J., Hong, Y., Lam, J. W., Qin, A., Tang, Y., & Tang, B. Z. (2014). Aggregation‐induced emission: The whole is more brilliant than the parts. Advanced Materials, 26(31), 5429–5479.
[32] Yuan, W. Z., Gong, Y., Chen, S., Shen, X. Y., Lam, J. W. Y., Lu, P., Lu, Y., Wang, Z., Hu, R., Xie, N., Kwok, H. S., Zhang, Y., Sun, J. Z., & Tang, B. Z. (2012). Efficient solid emitters with aggregation induced emission and intramolecular charge transfer characteristics: molecular design, synthesis, photophysical behaviors, and OLED application. Chemistry of Materials, 24(8), 1518 1528.
[33] Li, W., Pan, Y., Xiao, R., Peng, Q., Zhang, S., Ma, D., et al. (2014). Employing ∼100 % excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge transfer excited state. Advanced Functional Materials, 24(11), 1609–1614.
[34] Wan, Y., Li, J., Peng, X., Huang, C., Qi, Q., Lai, W. Y., & Huang, W. (2017). Intramolecular charge transfer induced emission from triphenylamine o carborane dyads. RSC Advances, 7(56), 35543–35548.
[35] Kumar, S., Franca, L. G., Stavrou, K., Crovini, E., Cordes, D. B., Slawin, A. M. Z., Monkman, A. P., & Zysman-Colman, E. (2021). Investigation of intramolecular through space charge transfer states in donor–acceptor charge transfer systems. Journal of Physical Chemistry Letters, 12(11), 2820–2830.
[36] Jeon, Y., Choi, H. R., Lim, M., et al. (2018). A wearable photobiomodulation patch using a flexible red‐wavelength OLED and its in vitro differential cell proliferation effects. Advanced Materials Technologies, 3(5), 1700391.
[37] Cocchi, M., Kalinowski, J., Virgili, D., & Williams, J. A. G. (2008). Excimer-based red/near-infrared organic light-emitting diodes with very high quantum efficiency. Applied Physics Letters, 92(11), 113302.
[38] Baldo, M. A., Thompson, M. E., & Forrest, S. R. (2000). High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature, 403(6771), 750–753.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98591-
dc.description.abstract有機發光二極體(organic light-emitting diode, OLED)因具備各項優點,已成為重要顯示與照明技術。熱激活化延遲螢光(thermally activated delayed fluorescence, TADF)材料因可有效利用所有激子、理論上可達到100%內部量子效率(internal quantum efficiency, IQE),已成為重要的OLED材料系統。TADF已在可見光波段展現成果,但應用於紅光與近紅外光仍面臨小能階差設計、發光強度與穩定性兼顧等挑戰,仍是目前OLED領域的重要研究方向。
本論文針對近紅外TADF材料 TPA-DPyIs 進行系統性分析,探討其光物理性質及在OLED元件中的應用潛力。透過將TPA-DPyIs摻雜於CBP與mCPCN主體材料中製成薄膜,觀察其光致發光(photoluminescence, PL)與水平發光偶極比(horizontal dipole ratio,θ_(//))。結果顯示,摻雜濃度提升至50 wt.%,PL波長可紅移至673 nm (CBP)及686 nm (mCPCN)。
OLED元件實驗中,以CBP為主體、50 wt.%摻雜時,獲得外部量子效率(external quantum efficiency, EQE)為0.362%;而mCPCN主體元件在相似條件下則展現更紅的電致發光(electroluminescence, EL)頻譜波長(694.2 nm),但效率略低(EQE = 0.237%)。純TPA-DPyIs元件則可實現780 nm以上的近紅外發光,證明其作為近紅外光TADF材料的潛力。然而,整體EQE仍偏低,顯示材料的PLQY與TADF效率仍有提升空間。
本研究探討TPA-DPyIs於長波長近紅外OLED元件的特性,未來可藉由分子設計與元件結構優化以進一步提升效率。
關鍵字: 有機發光二極體、近紅外光、熱活化延遲螢光、外部量子效率
zh_TW
dc.description.abstractOrganic light-emitting diodes (OLEDs) have become an important technology for next-generation displays and lighting, owing to their various advantages.Thermally activated delayed fluorescence (TADF) materials have attracted increasing attention due to their ability to harvest all excitons and achieve a theoretical internal quantum efficiency (IQE) of 100%. Although TADF materials have shown promising results in the visible range, their application and NIR regions remains limited by the difficulty of achieving small ΔEST values while maintaining high photoluminescence intensity.
This study focuses on the systematic analysis of a NIR TADF emitter, TPA-DPyIs, including its photophysical properties and device performance in OLEDs. TPA-DPyIs was doped into CBP and mCPCN host materials to fabricate emissive thin films. Photoluminescence (PL) and horizontal dipole orientation ratio (θ//) were examined. The results indicate that increasing the doping concentration to 50 wt.% led to significant redshifts in PL wavelengths to 673 nm (CBP) and 686 nm (mCPCN).
In OLED devices, the structure using CBP as the host, 50 wt.% doping concentration, achieved the external quantum efficiency (EQE) of 0.362%. On the other hand, devices using mCPCN as the host exhibited a redder electroluminescence (EL) peak at 694.2 nm but slightly lower efficiency (EQE = 0.237%). Furthermore, undoped TPA-DPyIs devices demonstrated EL emission beyond 780 nm, confirming the material’s potential as a NIR TADF emitter. However, the overall EQE remains relatively low, indicating room for improvement in PL quantum yield and TADF efficiency.
This work studies the characteristics of TPA-DPyIs for long-wavelength NIR OLEDs. Future efforts on molecular design and device engineering are needed to further enhance performance and expand its applications.
Keywords: organic light-emitting diode, near-infrared, thermally activated delayed fluorescence, external quantum efficiency
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:00:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:00:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目次 V
表次 VII
圖次 VIII
第一章 研究背景與動機 1
1.1 有機發光二極體技術概述 1
1.2 有機發光材料系統概述 2
1.3 研究動機與論文架構 4
第一章圖表 6
第二章 近紅外熱活化延遲螢光材料與 OLED 元件研究 9
2.1 本章前言 9
2.2 研究方法 9
2.2.1 材料 10
2.2.2 光物理特性量測 11
2.2.3 水平發光偶極比之量測 12
2.2.4 元件製作與量測 12
2.3 實驗結果與分析討論 13
2.3.1 光物理特性 13
2.3.2 水平發光偶極比之發光量測 15
2.3.3 元件特性量測結果 15
2.4 小結與觀察重點 19
第二章圖表 20
第三章 研究結論與未來展望 42
參考資料 43
-
dc.language.isozh_TW-
dc.subject有機發光二極體zh_TW
dc.subject近紅外光zh_TW
dc.subject熱活化延遲螢光zh_TW
dc.subject外部量子效率zh_TW
dc.subjectorganic light-emitting diodeen
dc.subjectnear-infrareden
dc.subjectthermally activated delayed fluorescenceen
dc.subjectexternal quantum efficiencyen
dc.title新型近紅外波段熱激活化延遲螢光材料之物理特性及元件研究zh_TW
dc.titleInvestigations on Near-InfraredThermally Activated Delayed Fluorescent Emitters and Devicesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張志豪;蔡志宏zh_TW
dc.contributor.oralexamcommitteeChih-Hao Chang;Chih-Hung Tsaien
dc.subject.keyword有機發光二極體,近紅外光,熱活化延遲螢光,外部量子效率,zh_TW
dc.subject.keywordorganic light-emitting diode,near-infrared,thermally activated delayed fluorescence,external quantum efficiency,en
dc.relation.page47-
dc.identifier.doi10.6342/NTU202503320-
dc.rights.note未授權-
dc.date.accepted2025-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved