請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98589完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉康慧 | zh_TW |
| dc.contributor.advisor | Helen K. Liu | en |
| dc.contributor.author | 范瀞文 | zh_TW |
| dc.contributor.author | Ching-Wen Fan | en |
| dc.date.accessioned | 2025-08-18T00:59:35Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | 壹、中文部分
王占璽(2015)。社會網絡分析與中國研究:關係網絡的測量與分析。中國大陸研究,58(2),23-59。 王安正、何清幼、王泰隆、黃信彰(2004)。臺北市士林、北投區提振基層醫療推動計畫。北市醫學雜誌,1(2),214-219。 王貞元(2015)。社區政治:社區組織的分裂、合作與分立〔碩士論文〕。國立政治大學政治學研究所。 江大樹、張力亞(2012)。社區營造、政策類型與網絡治理—「六星計畫」比較分析。政策與人力管理,3(2),1-42。 吳小萍、陳芃年、王喬萱、蘇福明(2021)。臺灣社會福利組織面對COVID-19之自助互助防疫行動—以基督教芥菜種會為例。社區發展季刊,175,259-270。 林金定、嚴嘉楓、陳美花(2005)。質性研究方法:訪談模式與實施步驟分析。身心障礙研究季刊,3(2),122-136。 林昕璇、左宜恩(2022)。例外與常態的悖論-美國與我國因應 COVID-19 緊急法制之比較研究。臺灣民主季刊,19(2),79-134。 洪德仁(2006)。社區產業之研究—以北投文化基金會為例〔碩士論文〕。臺北藝術大學藝術行政與管理研究所。 洪德仁、周家慧(2006)。營造一個讓人感到幸福健康的社區建構北投社區健康福祉網絡的芻議。社區發展季刊,116,193-212。 洪德仁(2022)。北投憲章3.0啟動社區共享共好健康生活。臺灣醫界,65(4),48-53。 胡龍騰(2008)。建構公民參與導向之政府績效管理模式。北投文化雜誌季刊,22,7-10。 范麗娟(1994)。深度訪談簡介。戶外遊憩研究,7(2),25-35。 陳佩研(2008)。奇岩新社區開發計劃公民陪審團。北投文化雜誌季刊,22,24-25。 曾瑞佳、趙永茂(2017)。區級社區治理中跨部門夥伴關係之研究:以台北市北投區社福醫療照護推動為例。載於國立臺灣大學出版中心(編),臺灣的民主生機:治理能力、政策網絡與社區參與(頁67-98)。國立臺灣大學出版中心。 黃源協、莊俐昕、劉素珍(2011)。社區社會資本的促成,阻礙因素及其發展策略:社區領導者觀點之分析。行政暨政策學報,52,87-130。 黃源協、劉素珍(2009)。社會資本對台灣社區發展之政策意涵。行政暨政策學報,48,155-192。 彭榮齊(2008)。社區意識與戶外活動空間關係之研究〔碩士論文〕。中國文化大學景觀研究所。 臺北市政府社會局(2024)。臺北市政府社會局114年度施政計畫。臺北市政府。https://dosw.gov.taipei/News.aspx?n=B9010832EAEAA739&sms=2198712B0E829571 劉吉軒(2010)。社會網路分析應用於政治權力結構與關係之研究:研究成果報告(NSC99-2221-E004-013)。行政院國家科學委員會。 劉孟俊、吳佳勳、王國臣(2022)。疫情後兩岸經貿互動趨勢與供應鏈地位變化。中國大陸研究,65(2),45-79。 劉發泉(1979)。台北市士林區與北投區聚落地理之比較研究。國立臺灣師範大學地理研究報告,5,190-221。 蔡政修(2021)。網絡社會與跨文化傳播視角下的文化外交:以新冠疫情期間台灣的防疫外交為例。東亞研究,52(2),1-42。 歐陽宇、王文杏、陳冠位、林端玲(2012)。溫泉產業之學習型社區永續發展模式研究。嘉南學報,38,400-414。 潘淑滿(2022)。質性研究:理論與應用(第43版)。心理出版社。 蘇育雯(2020)。從社會網絡結構探討線上影視社群的口碑傳播—路徑分析及語意網絡之混合研究〔碩士論文〕。國立交通大學。 貳、西文部分 Andion, C. (2020). Civil society mobilization in coping with the effects of COVID-19 in Brazil. Revista de Administração Pública, 54, 936-951. Aoki, Y., Kinoshita, Y., Setoya, N., Iwamoto, M., Funakoshi, A., Buyo, M., Matsueda, M., Kataoka, M., Ambo, H., Kayama, M. (2022). Experiences of Welfare Managers in Response to The COVID-19 Pandemic. Journal of Japan Academy of Nursing Science, 42, 21-30. Bareket-Bojmel, L., Shahar, G., & Margalit, M. (2021). COVID-19-related economic anxiety is as high as health anxiety: findings from the USA, the UK, and Israel. International journal of cognitive therapy, 14, 566-574. Barnes, J. A. (1954). Class and committees in a Norwegian island parish. Human relations, 7(1), 39-58. Barrett, P., & Chen, S. (2021). Social repercussions of pandemics [IMF Working Paper, International Monetary Fund] Berridge, C., Parsey, C. M., Ramirez, M., Freitag, C., Johnson, I., & Allard, S. W. (2020). Caring for Washington’s older adults in the COVID-19 pandemic: Interviews with organization leaders about the state of social and healthcare services. School of public health, University of Washington. Bhandari, H., & Yasunobu, K. (2009). What is social capital? A comprehensive review of the concept. Asian Journal of Social Science, 37(3), 480-510. Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(5916), 892-895. Bott, E. (1957). Family and Social Network. Tavistock. Brass, D.J., Galaskiewicz, J., Greve, H.R., & Tsai, W. (2004). Taking stock of networks and organizations: A multilevel perspective. Academy of Management Journal, 47, 795-817. Burt, R. S. (2000). The network structure of social capital. Research in organizational behavior, 22, 345-423. Chan, T. C., Fu, Y. C., Wang, D. W., & Chuang, J. H. (2014). Determinants of receiving the pandemic (H1N1) 2009 vaccine and intention to receive the seasonal influenza vaccine in Taiwan. PLoS ONE, 9(6): e101083. Chen, B., & Graddy, E. A. (2010). The effectiveness of nonprofit lead‐organization networks for social service delivery. Nonprofit Management and Leadership, 20(4), 405-422. Chen, H., Paris, C., & Reeson, A. (2020). The impact of social ties and SARS memory on the public awareness of 2019 novel coronavirus (SARS-CoV-2) outbreak. Scientific Reports, 10(1), 18241. Chen, K. T., Twu, S. J., Chang, H. L., Wu, Y. C., Chen, C. T., Lin, T. H., Olsen, S. J., Dowell, S. F., & Su, I. J. (2005). SARS in Taiwan: An overview and lessons learned. International Journal of Infectious Diseases, 9(2), 77-85. Das, K., Samanta, S., & Pal, M. (2018). Study on centrality measures in social networks: a survey. Social network analysis and mining, 8(1), 1-11. Du Boys, C., Bertolucci, M., & Fouchet, R. (2022). French inter-governmental relations during the Covid-19 crisis: between hyper-centralism and local horizontal cooperation. Local Government Studies, 48(2), 251-270. Emirbayer, M., & Goodwin, J. (1994). Network analysis, culture, and the problem of agency. American journal of sociology, 99(6), 1411-1454. Fujioka, T. (2022). “Support for Supporters” in Various Fields of Social Welfare under Severe Situations during the COVID-19 Pandemic in Japan. 日本社会事業大学研究紀要, 68, 155-172. Gauthier, G. R., Smith, J. A., García, C., Garcia, M. A., & Thomas, P. A. (2021). Exacerbating inequalities: Social networks, racial/ethnic disparities, and the COVID-19 pandemic in the United States. The Journals of Gerontology: Series B, 76(3), 88-92. Gong, X., Peng, S., Lu, Y., Wang, S., Huang, X., & Ye, X. (2023). Social network analysis of nonprofits in disaster response: the case of Twitter during the COVID-19 pandemic in the United States. Social Science Computer Review, 41(6), 2029-2054. Graddy, E. A., & Chen, B. (2006). Influences on the size and scope of networks for social service delivery. Journal of public administration research and theory, 16(4), 533-552. Granovetter, M. S. (1973). The strength of weak ties. American journal of sociology, 78(6), 1360-1380. Guo, C., & Acar, M. (2005). Understanding collaboration among nonprofit organizations: Combining resource dependency, institutional, and network perspectives. Nonprofit and voluntary sector quarterly, 34(3), 340-361. Haythornthwaite, C. (1996). Social network analysis: An approach and technique for the study of information exchange. Library & information science research, 18(4), 323-342. House, J. S., Umberson, D., & Landis, K. R. (1988). Structures and processes of social support. Annual review of sociology, 14(1), 293-318. Hu, M., & Sidel, M. (2020). Civil society and COVID in China: Responses in an authoritarian society. Nonprofit and Voluntary Sector Quarterly, 49(6), 1173-1181. Hughey, J., & Speer, P. W. (2002). Community, sense of community, and networks. In A. T. Fisher, C. C. Sonn, & B. J. Bishop (Eds.), Psychological sense of community: Research, applications, and implications (pp. 69-84). Springer US. Jaysawal, N. (2017). Role of non-governmental organization (NGO) in social capital: a review. Asian Journal of Research in Social Sciences and Humanities, 7(6), 341-351. Karaivanov, A. (2020). A social network model of COVID-19. PLoS ONE, 15(10), e0240878. Kasarda, J. D., & Janowitz, M. (1974). Community attachment in mass society. American sociological review, 39(3), 328-339. Knoke, D., & Kuklinski, J. H. (1991). Network analysis: Basic concepts. In G. Thompson, J. Frances, R. Levacic, & J. Mitchell (Eds.), Markets, hierarchies and networks: The coordination of social life (pp. 173-182). Sage. Knoke, D., & Yang, S. (2008). Social network analysis (2nd ed.). SAGE Publications. Larkins, C. (2023). From crisis to adaptation: Assessing disaster preparedness and response strategies among Toronto nonprofit organizations during COVID-19 [Master’s thesis, University of Victoria]. Lee, S. A., Jobe, M. C., Mathis, A. A., & Gibbons, J. A. (2020). Incremental validity of coronaphobia: Coronavirus anxiety explains depression, generalized anxiety, and death anxiety. Journal of anxiety disorders, 74, 102268. Lin, N. (2001). Social Capital: A Theory of Social Structure and Action. Cambridge University Press. Lin, N. (2017). Building a network theory of social capital. Connections, 22(1), 28-51. Liu, H. K. (2019). The impact of transition from British to Chinese rule on social service delivery systems in Hong Kong. Policy & Politics, 47(2), 331-352. Marin, A., & Wellman, B. (2011). Social network analysis: An introduction. In J. Scott & P. J. Carrington (Eds.), The SAGE handbook of social network analysis (pp. 11-25). SAGE Publications. Marks, R., & Toye, M. (2020). Community Economic Development-A Viable Solution for COVID Recovery. Canadian Journal of Nonprofit and Social Economy Research. 11(2), 16-19. McMillan, D. W., & Chavis, D. M. (1986). Sense of community: A definition and theory. Journal of community psychology, 14(1), 6-23. Ortega, F., & Behague, D. (2022). Contested leadership and the governance of COVID-19 in Brazil: The role of local government and community activism. Global Public Health, 17(4), 483-495. Perkins, D. D., & Long, D. A. (2002). Neighborhood sense of community and social capital: A multi-level analysis. In A. T. Fisher, C. C. Sonn, & B. J. Bishop (Eds.), Psychological sense of community: Research, applications, and implications (pp. 291-318). Springer US. Plaisance, G. (2021). French nonprofit organizations facing COVID-19 and lockdown: Maintaining a sociopolitical role in spite of the crisis of resource dependency. Canadian Journal of Nonprofit and Social Economy Research, 12(S1), 65-81. Poortinga, W. (2006). Social relations or social capital? Individual and community health effects of bonding social capital. Social science & medicine, 63(1), 255-270. Putnam, R. D. (1994). Making democracy work: Civic traditions in modern Italy. Princeton University Press. Rainie, L., & Wellman, B. (2012). Networked: The new social operating system. Cambridge, MA: MIT Press. Ratliff, G. A., Sousa, C. A., Graaf, G., Akesson, B., & Kemp, S. P. (2022). Reconsidering the role of place in health and welfare services: Lessons from the COVID-19 pandemic in the United States and Canada. Socio-Ecological Practice Research, 4(2), 57-69. Scott, J. (1988). Trend report social network analysis. Sociology, 22(1), 109-127. Scott, J. (2011). Social network analysis: Developments, advances, and prospects. Social Network Analysis and Mining, 1(1), 21-26. Serrat, O. (2017). Social network analysis. In Knowledge solutions: Tools, methods, and approaches to drive organizational performance (pp. 39-43). Springer. Soon, W. (2020). From sars to covid-19: Rethinking global health lessons from Taiwan. East Asian Science, Technology and Society: An International Journal, 14(4), 647-655. Thoits, P. A. (2011). Mechanisms linking social ties and support to physical and mental health. Journal of health and social behavior, 52(2), 145-161. Thompson, L., & Walker, A. J. (1982). The dyad as the unit of analysis: Conceptual and methodological issues. Journal of Marriage and the Family, 44(4), 889-900. Tsai, T. I. A. (2014). Strategies of building a stronger sense of community for sustainable neighborhoods: Comparing neighborhood accessibility with community empowerment programs. Sustainability, 6(5), 2766-2785. Wang, X., & Cheng, Y. (2021). Cross the river by feeling the stones: How did nonlocal grassroots nonprofits overcome administrative barriers to provide quick responses to COVID‐19?. Public Administration and Development, 41(2), 91-98. Wäsche, H., Dickson., G., Woll, A., & Brandes, U. (2017). Social network analysis in sport research: An emerging paradigm. European Journal for Sport and Society, 14(2), 138-165. Wasserman, S., & Faust, K. (1994). Social network analysis in the social and behavioral sciences. In Social network analysis: Methods and applications (pp. 1-27). Cambridge University Press. Weick, K. E. (1993). The collapse of sensemaking in organizations: The Mann Gulch disaster. Administrative Science Quarterly, 38(4), 628-652. Wijaya, I. N. S., Purnamasari, W. D., & Sitaresmi, D. (2018). Defining place attachment in community base development program for urban settlement: A theoretical review. IOP Conference Series: Earth and Environmental Science, 202(1), 012052. Wilke, N. G., Howard, A. H., & Pop, D. (2020). Data-informed recommendations for services providers working with vulnerable children and families during the COVID-19 pandemic. Child Abuse & Neglect, 110, 104642. 參、網路資源 OpenAI. (2025). ChatGPT (GPT-4o) [Large language model]. https://chat.openai.com (Partially used for text editing and formatting adjustments.) World Health Organization. (2020, January 30). Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) 衛生福利部疾病管制署(2020年4月27日)。新冠併發重症 疾病介紹。https://www.cdc.gov.tw/Category/Page/vleOMKqwuEbIMgqaTeXG8A(最後瀏覽日期:2025年8月2日) 衛生福利部(2020年4月1日)。公布「社交距離注意事項」(在室內應保持1.5公尺;室外保持1公尺距離)。https://covid19.mohw.gov.tw/ch/cp-4822-53415-205.html 林妤昕(2025年4月14日)。北投展現文化底蘊 積極推展福利工作。台灣生活新聞。https://news.st-media.com.tw/news/48006 東森新聞(2020年3月29日)。居家檢疫者破六萬 里長忙翻!幫送餐、緊盯防落跑。https://news.ebc.net.tw/news/living/203188 臺北市北投區公所。認識北投—地理環境概述。https://btdo.gov.taipei/News_Content.aspx?n=7D7EDC0B5D930FE8&s=1E5B4B51ACD612F8(最後瀏覽日期:2022年6月30日) 臺北市北投區公所。臺北市北投區社區發展協會名單。https://reurl.cc/MyvVv3(最後瀏覽日期:2023年1月31日) | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98589 | - |
| dc.description.abstract | 本研究以臺北市北投區之社會福利機構為觀察對象,探討COVID-19疫情前後社福組織面臨的挑戰,以及所處社會網絡的變化歷程。進一步分析社福機構在疫情衝擊下,與組織內部、合作單位及服務對象之間的網絡互動轉變,涵蓋人力管理、連結關係、資源流動等面向,並討論相對應的調整與創新策略。相較於多數以宏觀地理區域或政策、經貿為主軸的相關文獻,本研究聚焦於社會網絡的整體形式與動態變化,關注在地情境下的具體實務議題,嘗試從機構視角出發,理解疫情所帶來的危機與潛在轉機。
在研究方法層面,本研究採質性取向,初步參考既有文獻、建構前期調查名單,並依實際訪談情況逐步修正,最終完成六間機構之深度訪談。受訪機構依服務對象可區分為兒少及身心障礙者,服務型態則包含團體安置型與日間照顧型。資料收集以半結構式訪談為主,後續進行逐字稿整理與主題分類,從中歸納出疫情前、後網絡互動的五大觀察面向,分別為:內部運作調整、對外連結限制、服務應變策略、服務對象關係變化,以及疫情三階段之回顧與對比。 重要研究發現如下: 一、機構對外網絡大多呈現限縮與停滯,特別是實體的合作需求大幅下降,網絡互動幾乎中止,或以線上方式取代部分功能。但與政府單位或上級單位的連結相對穩定,反映出危機中對於正式結構性關係的資源依賴。 二、疫情衝擊雖導致多數機構的外部連結暫時斷裂,但受訪機構多能展現出高度內部彈性,包含輪流排班、跨職位支援等,成為度過疫情困境的重大關鍵。 三、應對防疫政策限制,受訪機構依據組織目標,部分以導入數位工具、資源整合等創新模式加以因應,其餘則將維持基本運作視為優先考量。呈現出特定時空環境下,不同背景條件的應對方式及調整能力。 四、疫情促使機構人員與服務對象的互動產生變化,大多因溝通及陪伴需求增加而促進情感連結,少數維持不變或將親密感認定為短暫現象,此一變化流程也增加了機構對於照顧責任的重新理解。 五、綜觀疫情歷程,可簡單區分為前期慌亂應對、中期資源重整與後期恢復穩定,其中的關鍵來自於機構內部拉力,顯示社福機構的網絡變遷具有階段性特徵,且為一個同時受多種作用力影響的動態拉鋸過程。 整體而言,本研究顯示出社福機構在面對公共緊急危機時,並非僅是疫情衝擊的被動接收者,而是能夠主動運用網絡位置、關係資源與內部彈性等條件,發揮調節與因應功能。這也反映了社會網絡在困境中的韌性、功能性與可回復性。 本研究的主要貢獻,在於透過真實案例的深度訪談與脈絡化分析,補足現有文獻中較少探討的小規模地區,以及以網絡型態為核心視角的研究缺口。透過探究社福機構在面對環境、人力與資源壓力下的實際應對方式,也進一步突顯了地方網絡、關係資本與自主調適能力在危機情境中的關鍵角色。 | zh_TW |
| dc.description.abstract | This study explores the challenges faced by social welfare organizations in Beitou District, Taipei City, before and after the COVID-19 pandemic, with a focus on the transformation of their social network dynamics. It further analyzes how these organizations adapted their interactions across internal operations, partner institutions, and service users, particularly in terms of manpower allocation, relational ties, and resource circulation, while identifying corresponding adjustments and innovative strategies. Unlike prior research that often centers on macro-regional, economic, or policy-level issues, this study adopts a local-level organizational perspective to examine the practice-oriented changes within the broader structure of social networks, aiming to understand both the crises and the potential turning points brought by the pandemic.
A qualitative approach was adopted in this study, starting with a preliminary list of organizations compiled from prior studies and subsequently refined based on actual accessibility and the feasibility of conducting interviews. In total, six in-depth interviews were conducted with social welfare institutions serving children, teenagers and persons with disabilities, including both residential and day-care service models. Data collection relied on semi-structured interviews, followed by transcript analysis and thematic sorting, leading to five major analytical dimensions: internal operational adjustments, external network constraints, service adaptation strategies, shifts in relationships with service users, as well as a three-stage review and comparison of the pandemic’s progression. The significant findings include: 1. The external network interactions became largely contracted or stalled, with in-person collaborations becoming rare and partially replaced by online alternatives. However, ties with government agencies or superior units remained relatively stable, reflecting resource reliance on formal structural networks during crises. 2. Despite the temporary disconnections from external partners, most organizations demonstrated substantial internal flexibility, including staff rotation and cross-role support, which proved crucial in navigating the pandemic’s difficulties. 3. Responding to policy restrictions of epidemic prevention, a portion of organizations introduced digital tools and resource integration strategies, while others prioritized maintaining core operations. It highlights the variety of methods and adaptive capacities under different background conditions, as in a specific time and space. 4. Changes in interaction among staffs and service users were also promoted during the pandemic. The emotional connections were often deepened due to increased needs for communications and companionships. In a few cases, the sense of intimacy is maintained as usual, or considered to be a temporary phenomenon. These shifts prompted organizations to reassess their understanding of caregiving responsibilities. 5. The pandemic track may be roughly divided into three stages—initial disruption, mid-term resource restructuring, and eventual stabilization. The pulling force from interior of organizations actually played a key role in it. This indicates that changes in social networks have phased characteristics, and they were shaped by competing forces in a dynamic process. Overall, the study reveals that social welfare organizations are not merely passive recipients of crisis impacts, but can actively leverage their network positions, relational capital, and internal elasticity to respond and adapt. These findings underscore the resilience, functionality, and recoverability of social networks under stress. The study contributes to existing literature by offering a contextualized, case-based analysis from a localized perspective, addressing a research gap in network-centered studies of a small-scale geographical area. By exploring the actual responses of social welfare organizations to the pressures of environment, manpower and available resources, it also emphasizes the critical role of local networks, relationship capitals, and the organizational self-adjustment capabilities in respond to crisis conditions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:59:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:59:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iv 英文摘要 vi 目次 ix 圖次 xiii 表次 xiv 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 4 壹、研究目的 4 貳、研究問題 6 第二章 文獻回顧 8 第一節 疫情時間區段的區分 8 壹、疫情起迄點之界定 8 貳、疫情階段的區分與否 9 參、小結 13 第二節 以北投區作為個案之原因 13 壹、北投區域特色 13 貳、北投區域特色與社會網絡間的應用連結 16 第三節 社會網絡 18 壹、社會網絡的發展與基本概念 18 貳、重要理論及相關概念補充 21 參、應用層面 25 肆、他國經驗研究 28 第三章 研究方法 36 第一節 研究架構與流程 36 壹、應用層面 36 貳、資料收集與分析 37 參、研究細節 38 肆、小結 43 第二節 訪談題綱設計 45 第三節 小結 51 第四章 訪談個案討論 52 第一節 個案C 53 壹、組織內部網絡的運作樣貌 53 貳、組織之間的網絡互動變化 56 參、疫情期間的創新與服務調整 57 肆、組織與服務對象之間的關係轉變 59 伍、疫情前後的對比與反思 61 第二節 個案D 64 壹、組織內部網絡的運作樣貌 64 貳、組織對外連結的互動變化 67 參、疫情期間的創新與服務調整 69 肆、組織與服務對象之間的關係轉變 72 伍、疫情前後的對比與反思 74 第三節 個案O 78 壹、組織內部網絡的運作樣貌 78 貳、組織之間的網絡互動變化 79 參、疫情期間的創新與服務調整 81 肆、組織與服務對象之間的關係轉變 83 伍、疫情前後的對比與反思 84 第四節 個案P 87 壹、組織內部網絡的運作樣貌 88 貳、組織之間的網絡互動變化 90 參、疫情期間的創新與服務調整 91 肆、組織與服務對象之間的關係轉變 94 伍、疫情前後的對比與反思 96 第五節 個案R 98 壹、組織內部網絡的運作樣貌 99 貳、組織對外連結的互動變化 101 參、疫情期間的創新與服務調整 103 肆、組織與服務對象之間的關係轉變 106 伍、疫情前後的對比與反思 108 第六節 個案S 113 壹、組織內部網絡的運作樣貌 113 貳、組織之間的網絡互動變化 116 參、疫情期間的創新與服務調整 118 肆、組織與服務對象之間的關係轉變 121 伍、疫情前後的對比與反思 123 第五章 結論與建議 130 第一節 研究發現總結 130 壹、組織內部網絡的運作與調整 131 貳、組織對外連結的互動變化 132 參、疫情期間的因應與創新策略 132 肆、與服務對象關係的轉變 133 伍、疫情前後的整體對比與網絡轉化 134 第二節 差異背後的結構性因素 136 壹、服務型態差異之於內部網絡韌性 137 貳、對外連結密度之於網絡恢復能力 138 參、機構服務特性之於創新策略選擇 139 肆、資金與物資來源之於財務穩定性 140 伍、服務關係轉變之於連結網絡強化 141 陸、小結:疫情前後的推拉力及網絡研究發現 142 第三節 理論對話 145 壹、弱連結與外部網絡變遷 146 貳、危機下的內部網絡凝聚與回應能力 148 參、網絡能動性與相應策略選擇 149 肆、網絡結構與疫情下的推、拉力論述 150 伍、國內外經驗比較 152 第四節 研究建議 157 壹、實務建議 157 貳、學術建議 160 第五節 研究限制 161 參考文獻 163 附錄一、研究知情同意書 173 附錄二、訪談題綱 174 附錄三、研究摘要 177 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | COVID-19 | zh_TW |
| dc.subject | 社會網絡 | zh_TW |
| dc.subject | 社會福利機構 | zh_TW |
| dc.subject | 組織韌性 | zh_TW |
| dc.subject | 人力配置 | zh_TW |
| dc.subject | 在地網絡 | zh_TW |
| dc.subject | Social welfare organizations | en |
| dc.subject | COVID-19 | en |
| dc.subject | Local networks | en |
| dc.subject | Manpower allocation | en |
| dc.subject | Organizational resilience | en |
| dc.subject | Social networks | en |
| dc.title | 試論疫情前後臺北市北投區之社會網絡比較與分析—以社會福利機構為主體 | zh_TW |
| dc.title | A Comparative Analysis of Social Networks in Beitou, Taipei Before and After COVID-19: Concentrating on Social Welfare Institutions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉凱琳;郭銘峰 | zh_TW |
| dc.contributor.oralexamcommittee | Kai-Lin Liu;Ming-Feng Kuo | en |
| dc.subject.keyword | COVID-19,社會網絡,社會福利機構,組織韌性,人力配置,在地網絡, | zh_TW |
| dc.subject.keyword | COVID-19,Social networks,Social welfare organizations,Organizational resilience,Manpower allocation,Local networks, | en |
| dc.relation.page | 180 | - |
| dc.identifier.doi | 10.6342/NTU202503324 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 社會科學院 | - |
| dc.contributor.author-dept | 公共事務研究所 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 公共事務研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
