請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98583完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳岳隆 | zh_TW |
| dc.contributor.advisor | Yueh-Lung Wu | en |
| dc.contributor.author | 蘇榆娟 | zh_TW |
| dc.contributor.author | Yu-Jyuan Su | en |
| dc.date.accessioned | 2025-08-18T00:58:08Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Akpinar Kara, Y. (2022). Evaluation of serum insulin-like growth factor-1, insulin, glucose levels in patients with adolescent and post-adolescent acne. J Cosmet Dermatol, 21(3), 1292-1296. https://doi.org/10.1111/jocd.14327
Arrese, E. L., & Soulages, J. L. (2010). Insect Fat Body: Energy, Metabolism, and Regulation. Annual Review of Entomology, 55(Volume 55, 2010), 207-225. https://doi.org/https://doi.org/10.1146/annurev-ento-112408-085356 Asgari, S. (2013). MicroRNA functions in insects. Insect Biochemistry and Molecular Biology, 43(4), 388-397. https://doi.org/https://doi.org/10.1016/j.ibmb.2012.10.005 Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 25(1), 25-29. https://doi.org/10.1038/75556 Bai, H., Kang, P., & Tatar, M. (2012). Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell, 11(6), 978-985. https://doi.org/10.1111/acel.12000 Bartel, D. P. (2004). MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116(2), 281-297. https://doi.org/https://doi.org/10.1016/S0092-8674(04)00045-5 Bearden, A. A., Stewart, E. M., Casher, C. C., Shaddix, M. A., Nobles, A. C., & Mockett, R. J. (2024). Effects of Target of Rapamycin and Phosphatidylinositol 3-Kinase Inhibitors and Other Autophagy-Related Supplements on Life Span in y w Male Drosophila melanogaster. Int J Mol Sci, 25(21). https://doi.org/10.3390/ijms252111504 Beckage, N. E., & Riddiford, L. M. (1982). Effects of parasitism by Apanteles congregatus on the endocrine physiology of the tobacco hornworm Manduca sexta. General and Comparative Endocrinology, 47(3), 308-322. https://doi.org/https://doi.org/10.1016/0016-6480(82)90238-6 Brandon, M. C., Pennington, J. E., Isoe, J., Zamora, J., Schillinger, A. S., & Miesfeld, R. L. (2008). TOR signaling is required for amino acid stimulation of early trypsin protein synthesis in the midgut of Aedes aegypti mosquitoes. Insect Biochem Mol Biol, 38(10), 916-922. https://doi.org/10.1016/j.ibmb.2008.07.003 Brown, M. R., Clark, K. D., Gulia, M., Zhao, Z., Garczynski, S. F., Crim, J. W., Suderman, R. J., & Strand, M. R. (2008). An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A, 105(15), 5716-5721. https://doi.org/10.1073/pnas.0800478105 Buron, I. d., & Beckage, N. E. (1997). Developmental changes in teratocytes of the braconid wasp Cotesia congregata in larvae of the tobacco hornworm, Manduca sexta. Journal of Insect Physiology, 43(10), 915-930. https://doi.org/https://doi.org/10.1016/S0022-1910(97)00056-5 Canavoso, L. E., Jouni, Z. E., Karnas, K. J., Pennington, J. E., & Wells, M. A. (2001). Fat metabolism in insects. Annu Rev Nutr, 21, 23-46. https://doi.org/10.1146/annurev.nutr.21.1.23 Chang, Y., Tang, C.-K., Lin, Y.-H., Tsai, C.-H., Lu, Y.-H., & Wu, Y.-L. (2020). Snellenius manilae bracovirus suppresses the host immune system by regulating extracellular adenosine levels in Spodoptera litura. Scientific Reports, 10(1), 2096. https://doi.org/10.1038/s41598-020-58375-y Chen, K., Dou, X., Eum, J. H., Harrison, R. E., Brown, M. R., & Strand, M. R. (2023). Insulin-like peptides and ovary ecdysteroidogenic hormone differentially stimulate physiological processes regulating egg formation in the mosquito Aedes aegypti. Insect Biochem Mol Biol, 163, 104028. https://doi.org/10.1016/j.ibmb.2023.104028 Chowański, S., Walkowiak-Nowicka, K., Winkiel, M., Marciniak, P., Urbański, A., & Pacholska-Bogalska, J. (2021). Insulin-Like Peptides and Cross-Talk With Other Factors in the Regulation of Insect Metabolism [Review]. Frontiers in Physiology, Volume 12 - 2021. https://doi.org/10.3389/fphys.2021.701203 Diggins, N. L., & Hancock, M. H. (2023). Viral miRNA regulation of host gene expression. Seminars in Cell & Developmental Biology, 146, 2-19. https://doi.org/https://doi.org/10.1016/j.semcdb.2022.11.007 Domínguez, C. V., Pagone, V., & Maestro, J. L. (2022). Regulation of insulin-like peptide expression in adult Blattella germanica females. Insect Biochem Mol Biol, 141, 103706. https://doi.org/10.1016/j.ibmb.2021.103706 Dong, S.-M., Cui, J.-H., Zhang, W., Zhang, X.-W., Kou, T.-C., Cai, Q.-C., Xu, S., You, S., Yu, D.-S., Ding, L., Lai, J.-H., Li, M., & Luo, K.-J. (2017). Inhibition of translation initiation factor eIF4A is required for apoptosis mediated by Microplitis bicoloratus bracovirus. Archives of Insect Biochemistry and Physiology, 96(3), e21423. https://doi.org/https://doi.org/10.1002/arch.21423 Fleming Jo-Ann, G. W., Blissard Gary, W., Summers Max, D., & Vinson, S. B. (1983). Expression of Campoletis sonorensis Virus in the Parasitized Host, Heliothis virescens. Journal of Virology, 48(1), 74-78. https://doi.org/10.1128/jvi.48.1.74-78.1983 Gao, X., Luo, J., Zhu, X., Wang, L., Ji, J., Zhang, L., Zhang, S., & Cui, J. (2019). Growth and Fatty Acid Metabolism of Aphis gossypii Parasitized by the Parasitic Wasp Lysiphlebia japonica. Journal of Agricultural and Food Chemistry, 67(32), 8756-8765. https://doi.org/10.1021/acs.jafc.9b02084 Géminard, C., Rulifson, E. J., & Léopold, P. (2009). Remote Control of Insulin Secretion by Fat Cells in Drosophila. Cell Metabolism, 10(3), 199-207. https://doi.org/https://doi.org/10.1016/j.cmet.2009.08.002 Gorczyca, M., Augart, C., & Budnik, V. (1993). Insulin-like receptor and insulin-like peptide are localized at neuromuscular junctions in Drosophila. J Neurosci, 13(9), 3692-3704. https://doi.org/10.1523/jneurosci.13-09-03692.1993 Grewal, S. S. (2009). Insulin/TOR signaling in growth and homeostasis: A view from the fly world. The International Journal of Biochemistry & Cell Biology, 41(5), 1006-1010. https://doi.org/https://doi.org/10.1016/j.biocel.2008.10.010 Gruntenko, N. E., & Rauschenbach, I. Y. (2018). The role of insulin signalling in the endocrine stress response in Drosophila melanogaster: A mini-review. Gen Comp Endocrinol, 258, 134-139. https://doi.org/10.1016/j.ygcen.2017.05.019 Gu, S. H., Lin, P. L., & Hsieh, H. Y. (2019). Bombyxin/Akt signaling in relation to the embryonic diapause process of the silkworm, Bombyx mori. J Insect Physiol, 116, 32-40. https://doi.org/10.1016/j.jinsphys.2019.04.007 Hossain, M. S., Liu, Y., Zhou, S., Li, K., Tian, L., & Li, S. (2013). 20-Hydroxyecdysone-induced transcriptional activity of FoxO upregulates brummer and acid lipase-1 and promotes lipolysis in Bombyx fat body. Insect Biochem Mol Biol, 43(9), 829-838. https://doi.org/10.1016/j.ibmb.2013.06.007 Huang, Y.-T., Wang, C.-L., & Hwang, S.-Y. (2022). Parasitic preference and growth performance of Snellenius manilae (Hymenoptera: Braconidae) on Spodoptera frugiperda and S. litura. Formosan Entomologist, 42(1), 11-24. Hyun, S. (2013). Body size regulation and insulin-like growth factor signaling. Cellular and Molecular Life Sciences, 70(13), 2351-2365. https://doi.org/10.1007/s00018-013-1313-5 Iga, M., & Smagghe, G. (2011). Relationship between larval-pupal metamorphosis and transcript expression of insulin-like peptide and insulin receptor in Spodoptera littoralis. Peptides, 32(3), 531-538. https://doi.org/10.1016/j.peptides.2010.10.033 Ihle, K. E., Baker, N. A., & Amdam, G. V. (2014). Insulin-like peptide response to nutritional input in honey bee workers. J Insect Physiol, 69, 49-55. https://doi.org/10.1016/j.jinsphys.2014.05.026 Ivell, R., Vinggaard, A. M., Soyama, H., & Anand-Ivell, R. (2022). Influence on the adult male Leydig cell biomarker insulin-like peptide 3 of maternal exposure to estrogenic and anti-androgenic endocrine disrupting compound mixtures: A retrospective study. Andrologia, 54(11), e14566. https://doi.org/10.1111/and.14566 Javier, A. M. V., & Ceballo, F. A. (2018). Life history and biological control potential of Snellenius manilae ashmead (Hymenoptera: Braconidae), a parasitoid of Spodoptera litura fabricius (Lepidoptera: Noctuidae). Philippine Agricultural Scientist, 101(2), 148-157. Kaczmarek, A., Wrońska, A. K., Sobich, J., & Boguś, M. I. (2024). Insect Lipids: Structure, Classification, and Function. In (pp. 1-45). Springer International Publishing. https://doi.org/10.1007/5584_2024_805 Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28(1), 27-30. https://doi.org/10.1093/nar/28.1.27 Kawabe, Y., Waterson, H., & Mizoguchi, A. (2019). Bombyxin (Bombyx Insulin-Like Peptide) Increases the Respiration Rate Through Facilitation of Carbohydrate Catabolism in Bombyx mori. Frontiers in Endocrinology, 10, 150. https://doi.org/10.3389/fendo.2019.00150 Kwon, B., & Kim, Y. (2008). Transient expression of an EP1-like gene encoded in Cotesia plutellae bracovirus suppresses the hemocyte population in the diamondback moth, Plutella xylostella. Developmental & Comparative Immunology, 32(8), 932-942. https://doi.org/https://doi.org/10.1016/j.dci.2008.01.005 Lee, S.-H., & Hou, R. F. (1992). Establishment of a cell line derived from embryos of the diamondback moth, Plutella xylostella (L.). Journal of Invertebrate Pathology, 59(2), 174-177. https://doi.org/https://doi.org/10.1016/0022-2011(92)90029-4 Lemaitre, B., & Hoffmann, J. (2007). The host defense of Drosophila melanogaster. Annu Rev Immunol, 25, 697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615 Li, H., Luo, X., Li, N., Liu, T., & Zhang, J. (2023). Insulin-like peptide 8 (Ilp8) regulates female fecundity in flies. Front Cell Dev Biol, 11, 1103923. https://doi.org/10.3389/fcell.2023.1103923 Li, S., Yu, X., & Feng, Q. (2019). Fat Body Biology in the Last Decade. Annu Rev Entomol, 64, 315-333. https://doi.org/10.1146/annurev-ento-011118-112007 Li, Y., Fang, Z., Tan, L., Wu, Q., Liu, Q., Wang, Y., Weng, Q., & Chen, Q. (2024). Gene redundancy and gene compensation of insulin-like peptides in the oocyte development of bean beetle. PLOS ONE, 19(5), e0302992. https://doi.org/10.1371/journal.pone.0302992 Liao, S., & Nässel, D. R. (2020). Drosophila Insulin-Like Peptide 8 (DILP8) in Ovarian Follicle Cells Regulates Ovulation and Metabolism. Front Endocrinol (Lausanne), 11, 461. https://doi.org/10.3389/fendo.2020.00461 Liao, S., Post, S., Lehmann, P., Veenstra, J. A., Tatar, M., & Nässel, D. R. (2020). Regulatory Roles of Drosophila Insulin-Like Peptide 1 (DILP1) in Metabolism Differ in Pupal and Adult Stages. Front Endocrinol (Lausanne), 11, 180. https://doi.org/10.3389/fendo.2020.00180 Lin, X., & Smagghe, G. (2019). Roles of the insulin signaling pathway in insect development and organ growth. Peptides, 122, 169923. https://doi.org/https://doi.org/10.1016/j.peptides.2018.02.001 Ling, L., & Raikhel, A. S. (2021). Cross-talk of insulin-like peptides, juvenile hormone, and 20-hydroxyecdysone in regulation of metabolism in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A, 118(6). https://doi.org/10.1073/pnas.2023470118 Ling, L., & Raikhel, A. S. (2023). Amino acid-dependent regulation of insulin-like peptide signaling is mediated by TOR and GATA factors in the disease vector mosquito Aedes aegypti. Proc Natl Acad Sci U S A, 120(34), e2303234120. https://doi.org/10.1073/pnas.2303234120 Lu, Z., Beck, M. H., & Strand, M. R. (2010). Egf1.5 is a second phenoloxidase cascade inhibitor encoded by Microplitis demolitor bracovirus. Insect Biochemistry and Molecular Biology, 40(7), 497-505. https://doi.org/https://doi.org/10.1016/j.ibmb.2010.04.009 Martinson, E. O., Chen, K., Valzania, L., Brown, M. R., & Strand, M. R. (2022). Insulin-like peptide 3 stimulates hemocytes to proliferate in anautogenous and facultatively autogenous mosquitoes. J Exp Biol, 225(5). https://doi.org/10.1242/jeb.243460 Miyazaki, T., Ishizaki, M., Dohra, H., Park, S., Terzic, A., Kato, T., Kohsaka, T., & Park, E. Y. (2017). Insulin-like peptide 3 expressed in the silkworm possesses intrinsic disulfide bonds and full biological activity. Sci Rep, 7(1), 17339. https://doi.org/10.1038/s41598-017-17707-1 Narvekar, P., Mehendale, S., Golvankar, G., Karmarkar, M., & Desai, S. (2018). Comparative biology of Spodoptera litura (Fab.) on different host plants under laboratory condition. International Journal of Chemical Studies, 6(6), 65-69. Nässel, D. R., Liu, Y., & Luo, J. (2015). Insulin/IGF signaling and its regulation in Drosophila. General and Comparative Endocrinology, 221, 255-266. https://doi.org/https://doi.org/10.1016/j.ygcen.2014.11.021 Neirijnck, Y., Papaioannou, M. D., & Nef, S. (2019). The Insulin/IGF System in Mammalian Sexual Development and Reproduction. Int J Mol Sci, 20(18). https://doi.org/10.3390/ijms20184440 Nhuchhen Pradhan, R., Montell, C., & Lee, Y. (2025). Cholesterol taste avoidance in Drosophila melanogaster. Elife, 14. https://doi.org/10.7554/eLife.106256 Nilsen, K. A., Ihle, K. E., Frederick, K., Fondrk, M. K., Smedal, B., Hartfelder, K., & Amdam, G. V. (2011). Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology. J Exp Biol, 214(Pt 9), 1488-1497. https://doi.org/10.1242/jeb.050393 Okamoto, N., & Yamanaka, N. (2015). Nutrition-dependent control of insect development by insulin-like peptides. Current Opinion in Insect Science, 11, 21-30. https://doi.org/https://doi.org/10.1016/j.cois.2015.08.001 Oldham, S., & Hafen, E. (2003). Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends in Cell Biology, 13(2), 79-85. https://doi.org/https://doi.org/10.1016/S0962-8924(02)00042-9 Osaki, T., Sasaki, K., & Minamino, N. (2011). Peptidomics-based discovery of an antimicrobial peptide derived from insulin-like growth factor-binding protein 5. J Proteome Res, 10(4), 1870-1880. https://doi.org/10.1021/pr101114a Pan, X., Pei, Y., Zhang, C., Huang, Y., Chen, L., Wei, L., Li, C., Dong, X., & Chen, X. (2022). Effect of Insulin Receptor on Juvenile Hormone Signal and Fecundity in Spodoptera litura (F.). Insects, 13(8). https://doi.org/10.3390/insects13080701 Pérez, C., Díaz-Roa, A., Bernal, Y., Arenas, N. E., Kalume, D. E., Côrtes, L. M. C., da Silva Junior, P. I., Varela, Y., Patarroyo, M. A., Torres, O., & Bello, F. J. (2021). Characterising four Sarconesiopsis magellanica (Diptera: Calliphoridae) larval fat body-derived antimicrobial peptides. Mem Inst Oswaldo Cruz, 116, e200587. https://doi.org/10.1590/0074-02760200587 Peter, M. E. (2009). Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle, 8(6), 843-852. https://doi.org/10.4161/cc.8.6.7907 Ratnaparkhi, A., & Sudhakaran, J. (2022). Neural pathways in nutrient sensing and insulin signaling. Front Physiol, 13, 1002183. https://doi.org/10.3389/fphys.2022.1002183 Rauschenbach, I. Y., Karpova, E. K., Burdina, E. V., Adonyeva, N. V., Bykov, R. A., Ilinsky, Y. Y., Menshanov, P. N., & Gruntenko, N. E. (2017). Insulin-like peptide DILP6 regulates juvenile hormone and dopamine metabolism in Drosophila females. Gen Comp Endocrinol, 243, 1-9. https://doi.org/10.1016/j.ygcen.2016.11.004 Schmittgen, T. D., Lee, E. J., Jiang, J., Sarkar, A., Yang, L., Elton, T. S., & Chen, C. (2008). Real-time PCR quantification of precursor and mature microRNA. Methods, 44(1), 31-38. https://doi.org/https://doi.org/10.1016/j.ymeth.2007.09.006 Shelby, K. S., & Webb, B. A. (1999). Polydnavirus-mediated suppression of insect immunity. Journal of Insect Physiology, 45(5), 507-514. https://doi.org/https://doi.org/10.1016/S0022-1910(98)00144-9 Shi, K., & Tong, C. (2022). Analyzing Starvation-Induced Autophagy in the Drosophila melanogaster Larval Fat Body. J Vis Exp(186). https://doi.org/10.3791/64282 Shira, C. D., Malakar, K., & Das, B. (2025). Unravelling the Role of Insulin-Like Peptide Genes in Bombyx mori: Potential Key Regulators of Insect Metabolism. Arch Insect Biochem Physiol, 118(4), e70054. https://doi.org/10.1002/arch.70054 Singh, C. P. (2020). Role of microRNAs in insect-baculovirus interactions. Insect Biochemistry and Molecular Biology, 127, 103459. https://doi.org/https://doi.org/10.1016/j.ibmb.2020.103459 Smykal, V., & Raikhel, A. S. (2015). Nutritional Control of Insect Reproduction. Curr Opin Insect Sci, 11, 31-38. https://doi.org/10.1016/j.cois.2015.08.003 Stoltz, D. B., & Vinson, S. B. (1979). Viruses and Parasitism in Insects. In M. A. Lauffer, F. B. Bang, K. Maramorosch, & K. M. Smith (Eds.), Advances in Virus Research (Vol. 24, pp. 125-171). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-3527(08)60393-0 Strand, M. H. B. a. M. R. (2007). A novel polydnavirus protein inhibits the insect prophenoloxidase activation pathway. https://doi.org/https://doi.org/10.1073/pnas.0708056104 Strand, M. R. (2012). Chapter 11 - Polydnavirus Gene Expression Profiling: What We Know Now. In N. E. Beckage & J.-M. Drezen (Eds.), Parasitoid Viruses (pp. 139-147). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384858-1.00011-4 Strand, M. R. (2014). Teratocytes and their functions in parasitoids. Current Opinion in Insect Science, 6, 68-73. https://doi.org/https://doi.org/10.1016/j.cois.2014.09.005 Strand, M. R., & Burke, G. R. (2014). Polydnaviruses: Nature's Genetic Engineers. Annu Rev Virol, 1(1), 333-354. https://doi.org/10.1146/annurev-virology-031413-085451 Strand, M. R., & Burke, G. R. (2015). Polydnaviruses: From discovery to current insights. Virology, 479-480, 393-402. https://doi.org/10.1016/j.virol.2015.01.018 Strand, M. R., McKenzie, D. I., Grassl, V., Dover, B. A., & Aiken, J. M. (1992). Persistence and expression of Microplitis demolitor polydnavirus in Pseudoplusia includens. Journal of General Virology, 73(7), 1627-1635. https://doi.org/https://doi.org/10.1099/0022-1317-73-7-1627 Suzawa, M., Muhammad, N. M., Joseph, B. S., & Bland, M. L. (2019). The Toll Signaling Pathway Targets the Insulin-like Peptide Dilp6 to Inhibit Growth in Drosophila. Cell Rep, 28(6), 1439-1446.e1435. https://doi.org/10.1016/j.celrep.2019.07.015 Szymczak-Cendlak, M., Gołębiowski, M., Chowański, S., Pacholska-Bogalska, J., Marciniak, P., Rosiński, G., & Słocińska, M. (2022). Sulfakinins influence lipid composition and insulin-like peptides level in oenocytes of Zophobas atratus beetles. J Comp Physiol B, 192(1), 15-25. https://doi.org/10.1007/s00360-021-01398-2 Tanaka, M. (2010). Relaxin-3/insulin-like peptide 7, a neuropeptide involved in the stress response and food intake. Febs j, 277(24), 4990-4997. https://doi.org/10.1111/j.1742-4658.2010.07931.x Tang, C.-K., Tsai, C.-H., Wu, C.-P., Lin, Y.-H., Wei, S.-C., Lu, Y.-H., Li, C.-H., & Wu, Y.-L. (2021). MicroRNAs from Snellenius manilae bracovirus regulate innate and cellular immune responses of its host Spodoptera litura. Communications Biology, 4(1), 52. https://doi.org/10.1038/s42003-020-01563-3 Theilmann, D. A., & Summers, M. D. (1986). Molecular Analysis of Campoletis sonorensis Virus DNA in the Lepidopteran Host Heliothis virescens. Journal of General Virology, 67(9), 1961-1969. https://doi.org/https://doi.org/10.1099/0022-1317-67-9-1961 Toprak, U., Hegedus, D., Doğan, C., & Güney, G. (2020). A journey into the world of insect lipid metabolism. Arch Insect Biochem Physiol, 104(2), e21682. https://doi.org/10.1002/arch.21682 Vedadghavami, A., Hakim, B., He, T., & Bajpayee, A. G. (2022). Cationic peptide carriers enable long-term delivery of insulin-like growth factor-1 to suppress osteoarthritis-induced matrix degradation. Arthritis Res Ther, 24(1), 172. https://doi.org/10.1186/s13075-022-02855-1 Vincent, B., Kaeslin, M., Roth, T., Heller, M., Poulain, J., Cousserans, F., Schaller, J., Poirié, M., Lanzrein, B., Drezen, J.-M., & Moreau, S. J. M. (2010). The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach. BMC Genomics, 11(1), 693. https://doi.org/10.1186/1471-2164-11-693 Vinson, S. B., & Iwantsch, G. F. (1980). Host Regulation by Insect Parasitoids. Quarterly Review of Biology, 55(2), 143-165. https://doi.org/Doi 10.1086/411731 Visser, B., & Ellers, J. (2008). Lack of lipogenesis in parasitoids: A review of physiological mechanisms and evolutionary implications. Journal of Insect Physiology, 54(9), 1315-1322. https://doi.org/https://doi.org/10.1016/j.jinsphys.2008.07.014 Visser, B., Le Lann, C., den Blanken, F. J., Harvey, J. A., van Alphen, J. J., & Ellers, J. (2010). Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc. Natl. Acad. Sci. U. S. A., 107, 8677. https://www.pnas.org/doi/pdf/10.1073/pnas.1001744107 Visser, B., Le Lann, C., Hahn, D. A., Lammers, M., Nieberding, C. M., Alborn, H. T., Enriquez, T., Scheifler, M., Harvey, J. A., & Ellers, J. (2023). Many parasitoids lack adult fat accumulation, despite fatty acid synthesis: A discussion of concepts and considerations for future research. Current Research in Insect Science, 3, 100055. https://doi.org/https://doi.org/10.1016/j.cris.2023.100055 Wang, L., Chen, H., Wang, L., & Song, L. (2020). An insulin-like peptide serves as a regulator of glucose metabolism in the immune response of Chinese mitten crab Eriocheir sinensis. Dev Comp Immunol, 108, 103686. https://doi.org/10.1016/j.dci.2020.103686 Wang, Y., Wu, X., Wang, Z., Chen, T., Zhou, S., Chen, J., Pang, L., Ye, X., Shi, M., Huang, J., & Chen, X. (2021). Symbiotic bracovirus of a parasite manipulates host lipid metabolism via tachykinin signaling. PLoS Pathog, 17(3), e1009365. https://doi.org/10.1371/journal.ppat.1009365 Wang, Z.-z., Ye, X.-q., Shi, M., Li, F., Wang, Z.-h., Zhou, Y.-n., Gu, Q.-j., Wu, X.-t., Yin, C.-l., Guo, D.-h., Hu, R.-m., Hu, N.-n., Chen, T., Zheng, B.-y., Zou, J.-n., Zhan, L.-q., Wei, S.-j., Wang, Y.-p., Huang, J.-h., . . . Chen, X.-x. (2018). Parasitic insect-derived miRNAs modulate host development. Nature Communications, 9(1), 2205. https://doi.org/10.1038/s41467-018-04504-1 Wei, L., Pérez-Rodríguez, M. Á., Robledo-Torres, V., & Montalvo-Arredondo, J. I. (2023). Polydnaviruses: Evolution and Applications. In C. N. Aguilar, S. Abdulhameed, R. Rodriguez-Herrera, & S. Sugathan (Eds.), Microbial Biodiversity, Biotechnology and Ecosystem Sustainability (pp. 427-447). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-4336-2_17 Ye, X.-q., Shi, M., Huang, J.-h., & Chen, X.-x. (2018). Parasitoid polydnaviruses and immune interaction with secondary hosts. Developmental & Comparative Immunology, 83, 124-129. https://doi.org/https://doi.org/10.1016/j.dci.2018.01.007 Yoshinari, Y., Kosakamoto, H., Kamiyama, T., Hoshino, R., Matsuoka, R., Kondo, S., Tanimoto, H., Nakamura, A., Obata, F., & Niwa, R. (2021). The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. Nat Commun, 12(1), 4818. https://doi.org/10.1038/s41467-021-25146-w Zaka, S. M., Abbas, N., Shad, S. A., & Shah, R. M. (2014). Effect of emamectin benzoate on life history traits and relative fitness of Spodoptera litura (Lepidoptera: Noctuidae). Phytoparasitica, 42, 493-501. Zeng, B., Huang, Y., Xu, J., Shiotsuki, T., Bai, H., Palli, S. R., Huang, Y., & Tan, A. (2017). The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori. J Biol Chem, 292(28), 11659-11669. https://doi.org/10.1074/jbc.M117.777797 Zhao, S., Wang, R., Liu, Y., Su, L., Dai, X., Qin, D., Chen, H., Yin, Z., Zheng, L., & Zhai, Y. (2023). DsFoxO knockout affects development and fecundity of Drosophila suzukii. Front Physiol, 14, 1290732. https://doi.org/10.3389/fphys.2023.1290732 Zhao, Y. M., Wang, X. P., Jin, K. Y., Dong, D. J., Reiff, T., & Zhao, X. F. (2022). Insulin-like Growth Factor 2 Promotes Tissue-Specific Cell Growth, Proliferation and Survival during Development of Helicoverpa armigera. Cells, 11(11). https://doi.org/10.3390/cells11111799 Zhu, H., Zheng, S., Xu, J., Wu, Q., Song, Q., & Ge, L. (2020). The Amino Acid-Mediated TOR Pathway Regulates Reproductive Potential and Population Growth in Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae). Front Physiol, 11, 617237. https://doi.org/10.3389/fphys.2020.617237 Zhu, K. Y., & Palli, S. R. (2020). Mechanisms, Applications, and Challenges of Insect RNA Interference. Annual Review of Entomology, 65(1), 293-311. https://doi.org/10.1146/annurev-ento-011019-025224 Zhu, R., & Chin-Sang, I. D. (2024). C. elegans insulin-like peptides. Mol Cell Endocrinol, 585, 112173. https://doi.org/10.1016/j.mce.2024.112173 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98583 | - |
| dc.description.abstract | 寄生蜂作為天敵,透過毒液與共生病毒等多種機制影響寄主生理,確保自身幼蟲能在寄主體內存活與發育。多去氧核醣核酸病毒 (polydnaviruses, PDVs)為寄生蜂的共生病毒,能調控寄主的免疫、發育與能量代謝等生理狀態,以利寄生蜂幼蟲的生長與發育。研究指出,共生病毒可透過小分子核糖核酸 (如miRNA與siRNA)調節寄主基因表現,進一步改變其生理功能。昆蟲的能量代謝在此寄生關係中扮演重要角色,尤其是類胰島素訊號路徑 (Insulin/ insulin grow factor (IGF) signaling pathway),是昆蟲體內高度保守的內分泌調控路徑,調控能量平衡、脂肪儲存與生長發育。脂肪不僅提供昆蟲生長、發育與免疫所需能量。對寄生蜂而言更為關鍵,因為寄生蜂幼蟲無法自行合成脂肪,故仰賴寄主提供脂肪作為能量來源。本研究欲了解寄生蜂是否能透過共生病毒影響寄主的類胰島素訊號傳遞,進一步調控脂肪合成,以馬尼拉小繭蜂與斜紋夜蛾為模式物種,探討共生病毒是否調控寄主的類胰島素訊號路徑,進而影響其脂肪代謝。我們以次世代定序技術 (next-generation sequencing, NGS) 分析馬尼拉小繭蜂共生病毒潛在表現微小核糖核酸 (micro RNA, miRNA) 寄主體內影響類胰島素訊號相關基因。接著透過定量聚合酶連鎖反應驗證這些基因在感染共生病毒後的表現變化,隨後分析感染後寄主體內胰島素訊號路徑終產物三酸甘油脂的含量。此外我們進一步合成miRNA類似物與抑制劑確認這些由共生病毒表現 miRNA之功能。研究結果顯示,當寄主斜紋夜蛾感染馬尼拉小繭蜂共生病毒後,類胰島素訊號路徑的基因表現顯著下降,抑制脂肪生合成,寄主體內三酸甘油脂 (triglyceride, TAG) 含量減少。病毒可能透過miRNA抑制寄主胰島素訊號路徑中的特定基因表現,進而影響脂肪儲存。這些結果進一步說明寄生蜂共生病毒可藉由影響寄主內分泌與能量代謝,使寄主處於能量缺乏狀態,進一步削弱免疫,從而間接為寄生蜂幼蟲的發育創造有利環境。本研究提供了寄生蜂如何透過共生病毒影響寄主能量代謝的新視角,並深化我們對寄生性天敵與寄主之間生理交互作用的理解。另外本研究也為昆蟲病理學與基因農藥的開發奠定理論基礎,未來可應用於害蟲的生物防治技術,如:透過核糖核酸干擾 (RNA interference, RNAi) 調控害蟲生理功能,進一步發展精準環保的害蟲防治管理策略。 | zh_TW |
| dc.description.abstract | Parasitoid wasps act as natural enemies and employ various mechanisms, such as venom and symbiotic viruses, to manipulate host physiology, thereby ensuring the survival and development of their larvae within the host. Polydnaviruses (PDVs), a group of symbiotic viruses associated with parasitoid wasps, play a crucial role in modulating host immunity, development, and energy metabolism to favor the growth and the development of wasp larvae. Studies have shown that PDVs can regulate host gene expression through small RNAs such as microRNAs (miRNAs), ultimately altering host physiological functions. Energy metabolism in insects plays a pivotal role in host-parasitoid interactions. In particular, the insulin/ insulin grow factor (IGF) signaling pathway is a highly conserved endocrine signaling pathway in insects, regulating energy balance, lipid storage, and development. Lipids are crucial for insect growth, development, and immune function. Still, they are also critical for parasitoid wasps, as their larvae are incapable of synthesizing de novo and rely on host-derived lipids as an energy source. This study aims to investigate whether parasitoid wasps can modulate the host’s insulin signaling pathway via their symbiotic viruses, thereby affecting lipid biosynthesis. Using Snellenius manilae and Spodoptera litura as model species, we investigate whether PDVs can regulate host insulin signaling pathways and alter lipid metabolism. We first employed next-generation sequencing to identify potential PDV-encoded miRNAs that may target host genes related to the insulin signaling pathway. We then used quantitative PCR (qPCR) to validate changes in gene expression following PDV infection and analyzed host triglyceride levels as a metabolic endpoint of the insulin signaling pathway. Furthermore, express miRNA mimics and inhibitors were applied to confirm the function of these PDV-derived miRNAs. Our results demonstrate that infection of ii S. litura by S. manilae PDVs significantly downregulates the expression of genes involved in the insulin signaling pathway, leading to suppressed lipid biosynthesis and a notable reduction in host triglyceride content. The virus likely achieves this by using miRNAs to suppress the expression of specific genes within the host insulin signaling pathway, thereby impairing lipid storage. These findings provide new insights into how PDVs manipulate host endocrine and metabolic systems to induce an energy-deficient state in the host, creating a more favorable environment for parasitoid larval development. This study enhances our understanding of the physiological interactions between parasitoid wasps and their hosts, offering a novel perspective on host-parasite interaction dynamics. Additionally, it lays the theoretical foundation for future insect pathology applications and RNA-based biopesticides development. Such strategies may be employed in pest control through the targeted regulation of pest physiology, contributing to advancing precise and environmentally friendly pest management technologies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:58:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:58:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目 次
摘要 i Abstract iii 目 次 v 圖 次 vii 表 次 viii 壹、前言 1 貳、往昔研究 4 2.1. 昆蟲的類胰島素在脂肪代謝與內分泌調控的角色 4 2.1.1. 昆蟲脂肪、脂肪體與內分泌對營養的調控 4 2.1.2. 類胰島素肽 4 2.1.3. 類胰島素訊號路徑 (insulin/ insulin grow factor (IGF) signaling pathway) 6 2.1.4. 雷帕黴素蛋白路徑 (target of rapamycin, TOR) 7 2.2. 馬尼拉小繭蜂、斜紋夜蛾與 Polydnaviruses (PDVs) 7 2.2.1. 馬尼拉小繭蜂 7 2.2.2. 斜紋夜蛾 8 2.2.3. 寄生蜂共生病毒PDVs 8 2.2.4. PDVs對寄主的調控 9 2.2.5. PDVs在寄主體內表現miRNA 10 參、材料方法 12 3.1. 斜紋夜蛾與馬尼拉小繭蜂飼育 12 3.2. 斜紋夜蛾細胞株 12 3.3. 寄生蜂共生病毒萃取與測定活性與幼蟲及細胞株感染 13 3.4. 幼蟲生長率測量 13 3.5. 幼蟲脂肪測定 14 3.6. 幼蟲三酸甘油脂測定 14 3.7. RNA萃取與互補DNA合成與定量聚合酶連鎖反應 14 3.8. Small RNA Hiseq 次世代定序流程 15 3.9. 使用Stem-loop PCR測定幼蟲及SL1A細胞株miRNA表現量 16 3.10. miRNA類似物及抑制劑轉染細胞及幼蟲感染 16 肆、結果 18 4.1. 寄生蜂共生病毒感染對寄主發育的影響 18 4.2. 寄生蜂共生病毒感染對寄主類胰島素訊號基因表現的影響 19 4.3. 寄生蜂共生病毒表現miRNAs影響寄主類胰島素訊號路徑。 19 4.4. 寄生蜂共生病毒表現之 SmBV-miR-2001-3p、SmBV-miR-9611-3p 及 SmBV-miR-981-5p 為影響類胰島素訊號之關鍵 miRNAs 21 4.5. 抑制miR-2001-3p、miR-9611-3p及miR-981-5p可部分恢復寄主之生長發育與三酸甘油脂含量 22 伍、討論 23 陸、參考文獻 46 圖 次 圖一、馬尼拉小繭蜂寄生與SmBV感染對斜紋夜蛾體型、生長速率與脂肪含量之影響。 27 圖二、 SmBV感染對斜紋夜蛾類胰島素訊號基因表現之影響。 29 圖三、SmBV預測miRNAs之功能與表現分析。 31 圖四、miRNA類似物 (mimic) 轉染至斜紋夜蛾細胞株,檢測miRNA組織特異性、類胰島素基因表現與三酸甘油脂含量。 33 圖五、miRNA抑制物 (inhibitor) 處理之斜紋夜蛾體型、生長率、三酸甘油脂含量、及斜紋夜蛾細胞株在處理抑制物後miRNA基因表現水平。 35 圖六、馬尼拉小繭蜂共生病毒SmBV表現miRNA影響寄主類胰島素訊號路徑以干擾寄主脂肪代謝。 37 表 次 表1、研究使用之qPCR primer。 38 表2、研究使用之stem-loop primer。 39 表3、研究使用之miRNA序列。 40 表4、透過RT q-PCR分析斜紋夜蛾幼蟲在寄生及感染SmBV後類胰島素訊號傳導路徑中基因表現量的變化。 41 表5、透過RT q-PCR分析SL1A感染SmBV後類胰島素訊號傳導路徑中基因表現量的變化。 42 表6、透過stem-loop qPCR檢測感染SmBV後斜紋夜蛾幼蟲頭部、腸道與脂肪體中miRNA的組織特異性表現情況。 43 表7、透過RT q-PCR分析SL1A轉染miR-9611-3p、miR-2001-3p後類胰島素訊號傳導路徑中基因表現量的變化。 44 表8、透過RT q-PCR分析SL1A轉染miR-981-5p後胰島素訊號傳導路徑中基因表現量的變化。 45 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 多去氧核醣核酸病毒 | zh_TW |
| dc.subject | 寄生蜂與寄主交互作用 | zh_TW |
| dc.subject | 營養調控 | zh_TW |
| dc.subject | 內分泌訊號 | zh_TW |
| dc.subject | 三酸甘油脂 | zh_TW |
| dc.subject | Triacylglycerol | en |
| dc.subject | Endocrine signaling | en |
| dc.subject | Nutrient regulation | en |
| dc.subject | Polydnaviruses | en |
| dc.subject | Parasitoid-host interaction | en |
| dc.title | 馬尼拉小繭蜂共生病毒表現微小核糖核酸干擾斜紋夜蛾類胰島素訊號路徑以抑制脂肪代謝 | zh_TW |
| dc.title | MicroRNAs Encoded by Snellenius manilae Bracovirus Suppress Insulin Signaling and Lipid Biosynthesis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳美娥;吳立心;唐政綱;陳韻如 | zh_TW |
| dc.contributor.oralexamcommittee | Me-Eir Chen;Li-Hsin Wu;Cheng-Kang Tang;Yun-Ru Chen | en |
| dc.subject.keyword | 寄生蜂與寄主交互作用,多去氧核醣核酸病毒,三酸甘油脂,內分泌訊號,營養調控, | zh_TW |
| dc.subject.keyword | Parasitoid-host interaction,Polydnaviruses,Triacylglycerol,Endocrine signaling,Nutrient regulation, | en |
| dc.relation.page | 55 | - |
| dc.identifier.doi | 10.6342/NTU202503390 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 昆蟲學系 | - |
| dc.date.embargo-lift | 2028-07-01 | - |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2028-07-01 | 2.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
