請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98581完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏志平 | zh_TW |
| dc.contributor.advisor | Chih-Ping Wei | en |
| dc.contributor.author | 白日明 | zh_TW |
| dc.contributor.author | Jih-Ming Pai | en |
| dc.date.accessioned | 2025-08-18T00:57:39Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | Carbonell, J., & Goldstein, J. (1998). The Use of MMR, Diversity-based Reranking for Reordering Documents and Producing Summaries. Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 335–336. https://doi.org/10.1145/290941.291025
Chen, L., Wu, L., Hong, R., Zhang, K., & Wang, M. (2020). Revisiting Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01), Article 01. https://doi.org/10.1609/aaai.v34i01.5330 Chen, W., Ren, P., Cai, F., Sun, F., & de Rijke, M. (2020). Improving End-to-end Sequential Recommendations with Intent-aware Diversification. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 175–184. https://doi.org/10.1145/3340531.3411897 Chen, Z., Badrinarayanan, V., Lee, C.-Y., & Rabinovich, A. (2018). GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks. Proceedings of the 35th International Conference on Machine Learning, 794–803. https://proceedings.mlr.press/v80/chen18a.html Covington, P., Adams, J., & Sargin, E. (2016). Deep Neural Networks for YouTube Recommendations. Proceedings of the 10th ACM Conference on Recommender Systems, 191–198. https://doi.org/10.1145/2959100.2959190 Di Noia, T., Ostuni, V. C., Rosati, J., Tomeo, P., & Di Sciascio, E. (2014). An Analysis of Users’ Propensity toward Diversity in Recommendations. Proceedings of the 8th ACM Conference on Recommender Systems, 285–288. Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., Quan, Y., Chang, J., Jin, D., He, X., & Li, Y. (2023). A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions. ACM Transactions on Recommender Systems, 1(1), 1–51. https://doi.org/10.1145/3568022 He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020). LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 639–648. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural Collaborative Filtering. Proceedings of the 26th International Conference on World Wide Web, 173–182. https://doi.org/10.1145/3038912.3052569 Hidasi, B., Quadrana, M., Karatzoglou, A., & Tikk, D. (2016). Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations. Proceedings of the 10th ACM Conference on Recommender Systems, 241–248. https://doi.org/10.1145/2959100.2959167 Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., Laroussilhe, Q. D., Gesmundo, A., Attariyan, M., & Gelly, S. (2019). Parameter-efficient Transfer Learning for NLP. Proceedings of the 36th International Conference on Machine Learning, 2790–2799. https://proceedings.mlr.press/v97/houlsby19a.html Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. (2021). LoRA: Low-rank Adaptation of Large Language Models arXiv preprint arXiv:2106.09685. Hu, Z., Dong, Y., Wang, K., & Sun, Y. (2020). Heterogeneous Graph Transformer. Proceedings of the Web Conference 2020, 2704–2710. Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix Factorization Techniques for Recommender Systems. Computer, 42(8), 30–37. Kurra, D. D., Ling, B., Zh, C., & Ashrafzadeh, S. (2024). Handling Large-scale Cardinality in Building Recommendation Systems arXiv preprint arXiv:2401.09572. Kwon, H., Han, J., & Han, K. (2020). ART (Attractive Recommendation Tailor): How the Diversity of Product Recommendations Affects Customer Purchase Preference in Fashion Industry? Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2573–2580. Lakkapragada, A., Sleiman, E., Surabhi, S., & Wall, D. P. (2023). Mitigating Negative Transfer in Multi-task Learning with Exponential Moving Average Loss Weighting Strategies (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 37(13), Article 13. https://doi.org/10.1609/aaai.v37i13.26983 Li, H., Wang, Y., Lyu, Z., & Shi, J. (2022). Multi-task Learning for Recommendation over Heterogeneous Information Network. IEEE Transactions on Knowledge and Data Engineering, 34(2), 789–802. https://doi.org/10.1109/TKDE.2020.2983409 Lin, B., Jiang, W., Ye, F., Zhang, Y., Chen, P., Chen, Y.-C., Liu, S., & Kwok, J. T. (2023). Dual-balancing for Multi-task Learning arXiv preprint arXiv:2308.12029. Liu, B., Liu, X., Jin, X., Stone, P., & Liu, Q. (2024). Conflict-averse Gradient Descent for Multi-task Learning arXiv preprint arXiv:2110.14048. Liu, S., Wang, C.-Y., Yin, H., Molchanov, P., Wang, Y.-C. F., Cheng, K.-T., & Chen, M.-H. (2024). DoRA: Weight-decomposed Low-rank Adaptation. Proceedings of the Forty-first International Conference on Machine Learning. Ma, L., Sinha, N., Cho, J. H., Kumar, S., & Achan, K. (2023). Personalized Diversification of Complementary Recommendations with User Preference in Online Grocery. Frontiers in Big Data, 6, 974072. Ma, X., Zhao, L., Huang, G., Wang, Z., Hu, Z., Zhu, X., & Gai, K. (2018). Entire Space Multi-task Model: An Effective Approach for Estimating Post-click Conversion Rate. Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 1137–1140. Peng, K., Raghavan, M., Pierson, E., Kleinberg, J., & Garg, N. (2023). Reconciling the Accuracy-diversity Trade-off in Recommendations arXiv preprint arXiv:2307.15142. Qin, L., & Zhu, X. (2013). Promoting Diversity in Recommendation by Entropy Regularizer. Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence, 2698–2704. Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012). BPR: Bayesian Personalized Ranking from Implicit Feedback arXiv preprint arXiv:1205.2618. Sener, O., & Koltun, V. (2019). Multi-task Learning as Multi-objective Optimization arXiv preprint arXiv:1810.04650. Sha, C., Wu, X., & Niu, J. (2016). A Framework for Recommending Relevant and Diverse Items. Proceedings of the Twenty-fifth International Joint Conference on Artificial Intelligence, 3868–3874. Shi, L. (2013). Trading-off among Accuracy, Similarity, Diversity, and Long-tail: A Graph-based Recommendation Approach. Proceedings of the 7th ACM Conference on Recommender Systems, 57–64. https://doi.org/10.1145/2507157.2507165 Shi, Y., Zhao, X., Wang, J., Larson, M., & Hanjalic, A. (2012). Adaptive Diversification of Recommendation Results via Latent Factor Portfolio. Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, 175–184. https://doi.org/10.1145/2348283.2348310 Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., & Jiang, P. (2019). BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer. Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 1441–1450. https://doi.org/10.1145/3357384.3357895 Vyas, L. K., & Boratto, L. (2025). Addressing Personalized Diversity in Eyewear Recommendation: A Lenskart Case Study. Proceedings of the 33rd ACM Conference on User Modeling, Adaptation and Personalization, 263–267. https://doi.org/10.1145/3699682.3728322 Wang, J., Yessenalina, A., & Roshan-Ghias, A. (2022). Exploring Heterogeneous Metadata for Video Recommendation with Two-tower Model arXiv preprint arXiv:2109.11059. Wang, X., He, X., Cao, Y., Liu, M., & Chua, T.-S. (2019). KGAT: Knowledge Graph Attention Network for Recommendation. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 950–958. https://doi.org/10.1145/3292500.3330989 Wang, X., He, X., Wang, M., Feng, F., & Chua, T.-S. (2019). Neural Graph Collaborative Filtering. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 165-174. Wang, Y., Lam, H. T., Wong, Y., Liu, Z., Zhao, X., Wang, Y., Chen, B., Guo, H., & Tang, R. (2023). Multi-task Deep Recommender Systems: A Survey arXiv preprint arXiv:2302.03525. Wasilewski, J., & Hurley, N. (2019). Bayesian Personalized Ranking for Novelty Enhancement. Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization, 144–148. Wei, Y., Wang, X., Nie, L., He, X., Hong, R., & Chua, T.-S. (2019). MMGCN: Multi-modal Graph Convolution Network for Personalized Recommendation of Micro-video. Proceedings of the 27th ACM International Conference on Multimedia, 1437–1445. https://doi.org/10.1145/3343031.3351034 Wu, H., Zhang, Y., Ma, C., Lyu, F., He, B., Mitra, B., & Liu, X. (2024). Result Diversification in Search and Recommendation: A Survey. IEEE Transactions on Knowledge and Data Engineering, 36(10), 5354–5373. Wu, Q., Liu, Y., Miao, C., Zhao, Y., Guan, L., & Tang, H. (2019). Recent Advances in Diversified Recommendation. arXiv preprint arXiv:1905.06589. Wu, W., Chen, L., & He, L. (2013). Using Personality to Adjust Diversity in Recommender Systems. Proceedings of the 24th ACM Conference on Hypertext and Social Media, 225–229. https://doi.org/10.1145/2481492.2481521 Yang, L., Liu, Z., Zhang, J., Murthy, R., Heinecke, S., Wang, H., Xiong, C., & Yu, P. S. (2024). Personalized Multi-task Training for Recommender System. Proceedings of the IEEE International Conference on Big Data, 413–422. Yin, K., Fang, X., Chen, B., & Sheng, O. (2022). Diversity Preference-aware Link Recommendation for Online Social Networks arXiv preprint arXiv:2205.10689. Yin, K., & Zhao, J. (forthcoming). Diversity and Serendipity Preference-aware Recommender System. Journal of Computational and Cognitive Engineering. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018). Graph Convolutional Neural Networks for Web-scale Recommender Systems. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 974–983. https://doi.org/10.1145/3219819.3219890 Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., & Finn, C. (2020). Gradient Surgery for Multi-task Learning arXiv preprint arXiv:2001.06782. Zhang, M., & Hurley, N. (2008). Avoiding Monotony: Improving the Diversity of Recommendation Lists. Proceedings of the 2008 ACM Conference on Recommender Systems, 123–130. https://doi.org/10.1145/1454008.1454030 Zhang, M., Yin, R., Yang, Z., Wang, Y., & Li, K. (2023). Advances and Challenges of Multi-task Learning Method in Recommender System: A Survey arXiv preprint arXiv:2305.13843. Zheng, Y., Gao, C., Chen, L., Jin, D., & Li, Y. (2021). DGCN: Diversified Recommendation with Graph Convolutional Networks. Proceedings of the Web Conference 2021, 401–412. https://doi.org/10.1145/3442381.3449835 Zhou, J., Agichtein, E., & Kallumadi, S. (2020). Diversifying Multi-aspect Search Results Using Simpson’s Diversity Index. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2345–2348. https://doi.org/10.1145/3340531.3412163 Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J. R., & Zhang, Y.-C. (2010). Solving the Apparent Diversity-accuracy Dilemma of Recommender Systems. Proceedings of the National Academy of Sciences, 107(10), 4511–4515. https://doi.org/10.1073/pnas.1000488107 Ziegler, C.-N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005). Improving Recommendation Lists through Topic Diversification. Proceedings of the 14th International Conference on World Wide Web, 22–32. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98581 | - |
| dc.description.abstract | 在推薦系統中,如何同時兼顧準確性與多樣性一直是長期存在的挑戰。雖然多樣化方法能提升內容的多元性,但常忽略使用者對多樣性的個別偏好,導致推薦結果不符合使用者的興趣,降低使用者滿意度。近期個人化的多樣化方法研究試圖透過建模使用者的多樣性偏好來解決此問題,但大多數方法仍依賴於後處理的優化策略,將使用者的多樣性偏好視為外部訊號,於分離的第二階段根據此資訊重新排序推薦結果。
本研究提出一種全新的多目標學習架構,將細緻的多樣性偏好內嵌至訓練過程中。透過設計多樣性偏好建模任務,以建構使用者對商品類別屬性的興趣分布,我們的方法能學得同時捕捉「相關性」與「多樣性偏好」的豐富表徵。 在真實世界資料集上的實驗結果顯示,我們的方法不僅能同時提升準確性與個人化多樣化表現,亦能有效緩解兩者間的權衡困境。這些成果突顯了將多樣性偏好視為可學習訊號的重要性,為打造更具適應性與使用者導向的推薦系統開啟了新的方向。 | zh_TW |
| dc.description.abstract | Balancing accuracy and diversity has been a long-standing challenge in recommender systems. While diversification methods enrich content variety, they often ignore user-specific preferences for diversity, leading to irrelevant recommendations and degraded user satisfaction. Recent efforts in personalized diversification attempt to address this by modeling users’ diversity preferences, but most rely on post-processing heuristics or external signals detached from core user modeling. In this work, we propose a novel multi-objective learning framework that internalizes fine-grained diversity preferences directly into the training process. By designing diversity preference modeling tasks that model user interest distributions across multiple item attributes, our method learns richer user/item representations that jointly capture both relevance and diversity preferences. Extensive experiments on a real-world dataset demonstrate that our approach not only improves accuracy and diversification personalization simultaneously, but also mitigates the typical trade-off between them. Our results highlight the value of treating diversity preference as a learnable signal, opening new possibilities for more adaptive, user-centric recommender systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:57:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:57:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Table of Contents iv List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Motivation 4 1.3 Research Objectives 6 Chapter 2 Literature Review 8 2.1 Diversity in Recommender System 8 2.1.1 Recommendation Diversification Methods 8 2.1.2 Personalized Diversification Methods 11 2.2 Representation Learning in Recommender System 15 2.2.1 User-Item Representation Learning 15 2.2.2 Multi-objective Learning for User/Item Representations 16 2.3 Summary 17 Chapter 3 Methodology 18 3.1 Problem Formulation 18 3.2 Overview of the Proposed Methods 19 3.2.1 Multi-task Learning (MTL) 20 3.2.2 Finetuning 20 3.3 Design of Diversity Preference Modeling Tasks 22 3.3.1 Diversity Preference Matching (DPM) 23 3.3.2 Diversity Preference Score Prediction (DPS) 25 3.2.3 Diversity Preference Regularization (DPR) 27 3.4 Loss Weighting Strategy 28 3.4.1 Static Weighting 28 3.4.2 Dynamic Weighting 29 Chapter 4 Experiments 31 4.1 Data Collection 31 4.2 Benchmark Design 34 4.3 Evaluation Procedure 36 4.3.1 Experimental Data 36 4.3.2 Evaluation Protocol 37 4.3.3 Hyperparameter Settings 39 4.4 Experimental Results 40 4.4.1 RQ1: How do our methods perform? 41 4.4.2 RQ2: How does each proposed task contribute? 45 4.4.3 RQ3: How do different model designs and configurations affect performance? 47 4.4.4 RQ4: How does our method generalize across different base recommendation models? 50 4.4.5 RQ5: What is the qualitative impact of our method? 53 Chapter 5 Conclusion 59 5.1 Conclusion 59 5.2 Future Works 60 References 62 | - |
| dc.language.iso | en | - |
| dc.subject | 個人化多樣化 | zh_TW |
| dc.subject | 推薦系統 | zh_TW |
| dc.subject | 多目標優化 | zh_TW |
| dc.subject | 表徵學習 | zh_TW |
| dc.subject | 多樣性偏好 | zh_TW |
| dc.subject | Diversity Preference | en |
| dc.subject | Representation Learning | en |
| dc.subject | Multi-objective Optimization | en |
| dc.subject | Personalized Diversification | en |
| dc.subject | Recommender Systems | en |
| dc.title | 以表徵學習方法實現考量多樣性偏好的推薦系統 | zh_TW |
| dc.title | Learning to Personalized Diversification: A Representation Learning Approach to Diversity Preference-Aware Recommendation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 向倩儀;楊錦生 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Yi Hsiang;Chin-Sheng Yang | en |
| dc.subject.keyword | 推薦系統,個人化多樣化,多樣性偏好,表徵學習,多目標優化, | zh_TW |
| dc.subject.keyword | Recommender Systems,Personalized Diversification,Diversity Preference,Representation Learning,Multi-objective Optimization, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202503366 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 3.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
