Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98573
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁健芳zh_TW
dc.contributor.advisorChien-Fang Dingen
dc.contributor.author黃亮禎zh_TW
dc.contributor.authorLiang-Zen Huangen
dc.date.accessioned2025-08-18T00:55:43Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation黃宣倫。2023。實現模糊控制於車道維持與主動車距調節。碩士論文,國立虎尾科技大學,雲林
Abdullah, A. B., and Z. Samad. 2013. An experimental investigation of springback of AA6061 aluminum alloy strip via V-bending process. In IOP Conference Series: Materials Science and Engineering 50(1): 012069.
Ajudiya, C. D. J., N. Nitin, R. Dangar, and K. D. Kothari. 2016. A review paper on forming process of perforated sheet metal. International Journal of Education and Science Research Review 3(3).
Arote, T., V. Thorkade, G. Burkul, P. Sangle, and K. S. Marathe. 2017. Improvement in welding fixture for riser frame of seating arrangement in automobile vehicle. International Journal of Innovative Research in Science and Engineering (Int. J. Innov. Res. Sci. Eng.) 3: 269–274.
ASIMETO. 2025. IP67 絕對式 (ABS) 數位量錶,Series 408. Available at: https://www.asimeto.com/webls-zh-tw/product-IP67-Digital-Indicators-Series-408.html. Accessed 30 June 2025.
Bingül, Z., Cook, G. E., & Strauss, A. M. (2000). Application of fuzzy logic to spatial thermal control in fusion welding. IEEE Transactions on Industry Applications, 36(6), 1523–1530.
Brand, M. J., P. A. Schmidt, M. F. Zaeh, and A. Jossen. 2015. Welding techniques for battery cells and resulting electrical contact resistances. Journal of Energy Storage 1: 7–14. doi:10.1016/j.est.2015.04.001.
Braunovic, M. 2007. Reliability of power connections. Journal of Zhejiang University-SCIENCE A 8(3): 343–356. doi:10.1631/jzus.2007.A0343.
Cai, W., J. Wang, P. Jiang, L. Cao, G. Mi, and Q. Zhou. 2020. Application of sensing techniques and artificial intelligence-based methods to laser welding real-time monitoring: A critical review of recent literature. Journal of Manufacturing Systems 57: 1–18. doi:10.1016/j.jmsy.2020.07.021.
Cha, J. H., and H. W. Choi. 2021. Characterization of dissimilar aluminum-copper material joining by controlled dual laser beam. The International Journal of Advanced Manufacturing Technology 119(3–4): 1909–1920. doi:10.1007/s00170-021-08324-4.
Choi, H., H. Son, Y. H. Choi, B. D. Youn, and G. Lee. 2023. Reliability-based design optimization of a pouch battery module using Gaussian process modeling in the presence of cell swelling. Structural and Multidisciplinary Optimization 66: 227. doi:10.1007/s00158-023-03662-1.
Dametew, A. W., and T. Gebresenbet. 2016. Numerical investigation of spring back on sheet metal bending process. Global Journal of Research in Engineering: Mechanical and Mechanics Engineering 16(4).
Das, A., D. Li, D. Williams, and D. Greenwood. 2018. Joining technologies for automotive battery systems manufacturing. World Electric Vehicle Journal 9(2): Article 22. doi:10.3390/wevj9020022.
Dong, S. J., G. P. Kelkar, and Y. Zhou. 2002. Electrode sticking during micro-resistance welding of thin metal sheets. IEEE Transactions on Electronics Packaging Manufacturing 25(4): 355–361. doi:10.1109/tepm.2002.807732.
Farsi, M. A., B. Arezoo, V. Alizadeh, and S. Mirzaee. 2011. The study of spring-back in wipe-bending processes for perforated components. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 225(11): 2007–2014. doi:10.1177/0954405411403253.
Go, B.-S., K.-H. Kim, C.-S. Ro, and H.-S. Bang. 2022. Influence of process parameters on formation of Al/Cu dissimilar weld using ultrasonic welding. International Journal of Precision Engineering and Manufacturing 23(12): 1359–1365. doi:10.1007/s12541-022-00651-0.
Janek, J., and W. G. Zeier. 2023. Challenges in speeding up solid-state battery development. Nature Energy 8(3): 230–240. doi:10.1038/s41560-023-01208-9.
Jetspower. 2025. NCM VDA355 Module. Available at: https://www.jetspower.com/Module_Details/NCM_VDA355_Module.html. Accessed 26 June 2025.
Kulkarni, Y. 2025. Battery Packaging Market Size, Share, Growth Projections & Major Players. Towards Packaging. Available at: https://www.towardspackaging.com/insights/battery-packaging-market-sizing.
Kumar, M. S. N. 2015. Influence of process parameters on the deep drawing of AL 6061 sheet. International Journal of Innovative Research in Science, Engineering and Technology 4(8): 7021–7030. doi:10.15680/ijirset.2015.0408044.
Kumar, N., I. Masters, and A. Das. 2021. In-depth evaluation of laser-welded similar and dissimilar material tab-to-busbar electrical interconnects for electric vehicle battery pack. Journal of Manufacturing Processes 70: 78–96. doi:10.1016/j.jmapro.2021.08.025.
Kumar, N., V. Gopikrishna, S. Sharma, and A. Das. 2022. In-depth evaluation of micro-resistance spot welding for connecting tab to 18650 Li-ion cells for electric vehicle battery application. The International Journal of Advanced Manufacturing Technology 121(9–10): 6581–6597. doi:10.1007/s00170-022-09775-z.
Li, B., B. W. Shiu, and K. J. Lau. 2003. Robust fixture configuration design for sheet metal assembly with laser welding. Journal of Manufacturing Science and Engineering. doi:10.1115/1.1536172.
Li, H., K.-p. Shi, H. Yang, and Y.-l. Tian. 2012. Springback law of thin-walled 6061-T4 Al-alloy tube upon bending. Transactions of Nonferrous Metals Society of China 22: S357–S363. doi:10.1016/s1003-6326(12)61731-2.
Li, H., X. Luo, L. Wang, and B. Lin. 2013. Transient temperature and heat flux measurement in ultrasonic joining of battery tabs using thin-film microsensors. Journal of Manufacturing Science and Engineering 135(5). doi:10.1115/1.4024816.
Saravanan, S., N. Rathish, N. Balakrishnan, R. Balamurugan, S. Balakumaran, S. Ajith, and A. S. Alexpandian. 2017. Experimental analyses of springback variation in wipe bending. International Journal of Engineering and Applied Sciences (IJEAS) 4(4).
Schmalen, P., and P. Plapper. 2016. Evaluation of laser braze-welded dissimilar Al–Cu joints. Physics Procedia 83: 506–514. doi:10.1016/j.phpro.2016.08.052.
Schricker, K., L. Schmidt, H. Friedmann, and J. P. Bergmann. 2023. Gap and force adjustment during laser beam welding by means of a closed-loop control utilizing fixture-integrated sensors and actuators. Applied Sciences 13(4). doi:10.3390/app13042744.
Shin, H.-S., and M. de Leon. 2017. Mechanical performance and electrical resistance of ultrasonic welded multiple Cu–Al layers. Journal of Materials Processing Technology 241: 141–153. doi:10.1016/j.jmatprotec.2016.11.004.
Shui, L., F. Chen, A. Garg, X. Peng, N. Bao, and J. Zhang. 2018. Design optimization of battery pack enclosure for electric vehicle. Structural and Multidisciplinary Optimization 58(1): 331–347. doi:10.1007/s00158-018-1901-y.
Soomro, I. A., S. R. Pedapati, and M. Awang. 2021. A review of advances in resistance spot welding of automotive sheet steels: emerging methods to improve joint mechanical performance. The International Journal of Advanced Manufacturing Technology 118(5–6): 1335–1366. doi:10.1007/s00170-021-08002-5.
Taheri, P., S. Hsieh, and M. Bahrami. 2011. Investigating electrical contact resistance losses in lithium-ion battery assemblies for hybrid and electric vehicles. Journal of Power Sources 196(15): 6525–6533. doi:10.1016/j.jpowsour.2011.03.056.
Vollertsen, F., A. Sprenger, J. Kraus, and H. Arnet. 1999. Extrusion, channel, and profile bending: a review. Journal of Materials Processing Technology 87(1–3): 1–27.
Wasif, M., A. Fatima, S. A. Iqbal, M. Tufail, and H. Karim. 2021. Analysis and optimization of springback during the V-bending of hot-rolled high strength steels (JSH440). Journal of Engineering Research 9. doi:10.36909/jer.11027.
Wasif, M., S. A. Iqbal, M. Tufail, and H. Karim. 2019. Experimental analysis and prediction of springback in V-bending process of high-tensile strength steels. Transactions of the Indian Institute of Metals 73(2): 285–300. doi:10.1007/s12666-019-01843-5.
Wevolver. n.d. An Engineer’s Guide to Bending Sheet Metal. Available at: https://www.wevolver.com/article/an-engineers-guide-to-bending-sheet-metal. Accessed 16 July 2025.
Zhu, B., Y. Liu, X. Zhang, and J. Wang. 2021. Effect of the scanning path on the nanosecond pulse laser welded Al/Cu lapped joint. Optics & Laser Technology 139. doi:10.1016/j.optlastec.2021.106945.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98573-
dc.description.abstract隨著電動車與儲能裝置需求提升,具備輕量化與高能量密度特性的軟包電池模組於產業應用日益廣泛。然而,其鋁極耳結構柔軟,容易在預處理階段產生形變與貼合不良,導致雷射焊接品質不穩,進而影響導電與結構可靠性。實務上,部分廠商仍倚賴人工對位與按壓,缺乏有效自動化對應方案。為解決上述問題,本研究提出一套整合式預處理機構,涵蓋旋轉式折彎模組與閉迴路滾壓系統。藉由有限元素模擬與成形力分析,驗證旋轉式折彎(Rotary bending)可有效降低回彈力需求,成形力僅為擦拭彎曲(Wipe bending)的50.2%。滾壓控制則結合壓力與距離感測,透過模糊控制器建構輸入-輸出對應規則曲面,實現查表式閉迴路控制。最終系統具備即時響應與彈性調控能力,可提升貼合品質與製程穩定性,提供未來自動化應用之設計依據。zh_TW
dc.description.abstractAs the demand for electric vehicles and energy storage systems continues to rise, pouch-type lithium battery modules, known for their lightweight structure and high energy density have become increasingly prevalent. However, due to the flexible and thin nature of aluminum tabs, issues such as deformation and misalignment frequently occur during pre-welding processing. These defects often result in weak or failed in laser welding, compromising electrical conductivity and structural integrity. In current industrial, the lack of automation has made consistent tab-busbar bonding a key challenge.
This research proposes an integrated pre-welding mechanism combining a rotary tab-bending module and a closed-loop rolling system to enhance the bonding quality between tabs and busbars. Finite element simulations and forming force evaluations indicate that the rotary bending method reduces the forming force to just 19.5% of that required in conventional wipe bending, demonstrating its suitability for aluminum tab forming. The rolling module incorporates pressure and distance sensing, with a fuzzy logic controller developed to adaptively regulate the pressing process. A rule-based surface was constructed and converted into a lookup table for real-time control implementation. The developed system provides reliable tab positioning and pressure regulation capabilities, contributing to improved bonding uniformity and welding consistency. This research offers a practical reference for the advancement of automation in pouch cell module assembly.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:55:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T00:55:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口委審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 v
圖次 ix
表次 xii
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3研究架構 3
第二章 文獻回顧 5
2.1電池單元 5
2.1.1電芯層級 6
2.1.2電池模組層級 6
2.2電池模組中極耳焊接技術與組裝考量 7
2.2.1超音波焊接 7
2.2.2雷射焊接 9
2.2.3電阻焊接 10
2.3電池模組組裝挑戰 11
2.3.1極耳與匯流排接點的機械缺陷 12
2.3.2接點電阻與熱管理挑戰 12
2.4薄金屬折彎 13
2.4.1薄金屬折彎 13
2.4.2薄板折彎成形技術 14
2.5間隙的補償與控制 16
2.5.1成形誤差與回彈補償技術 16
2.5.2智慧夾具與閉迴路控制策略 17
2.6小結 19
第三章 材料與方法 20
3.1研究流程以及系統架構 20
3.2實驗材料 22
3.2.1VDA355 22
3.2.2極耳材料 23
3.2.3匯流排(Busbar) 24
3.2.4匯流排搭載台 24
3.3軟包電池極耳折彎實驗 25
3.3.1有限元素分析(Finite element analysis, FEA) 25
3.3.1.1回彈判定準則與分析方法 26
3.3.1.2不同折彎方式之模擬研究 27
3.3.1.3極耳折彎實驗變因設計 28
3.3.2極耳折彎系統 29
3.3.2.1移動平台 29
3.3.2.2微控制器 30
3.3.2.3致動器 30
3.4軟包電池極耳滾壓實驗 31
3.4.1極耳滾壓系統 31
3.4.1.1微控制器 31
3.4.1.2量測訊號 31
3.4.1.3以 L298N 控制之線性推桿驅動模組 33
3.4.2滾壓控制方法 33
3.5量測設備 34
3.5.1極耳折彎量測 34
3.5.1.1 Raspberry Pi 5 34
3.5.1.2 Raspberry Pi Camera Module 3 35
3.5.2極耳滾壓量測 37
第四章 結果與討論 38
4.1軟包電池極耳折彎 38
4.1.1折彎技術的比較結果 38
4.1.2機構件與匯流排垂直距離對折彎行為之影響 39
4.1.3匯流排間隙對折彎行為之影響 41
4.1.4治具導圓角對折彎行為之影響 42
4.1.5原匯流排尺寸與建議匯流排尺寸進行對比 44
4.1.6極耳折彎機構設計 46
4.1.7 機構與模擬的0-90度的回彈角度比較 47
4.2軟包電池極耳滾壓 49
4.2.1極耳滾壓機構設計 49
4.2.2模糊控制區段設定 50
4.2.3模糊控制器設計 52
4.2.3.1模糊化(Fuzzification) 53
4.2.3.2模糊規則庫(Fuzzy rule base) 54
4.2.3.3解模糊化(Defuzzification) 55
4.2.4模糊控制策略對成形品質之影響比較 57
第五章 結論與未來展望 60
5.1結論 60
5.2未來展望 61
參考文獻 62
附錄 67
折彎機構 67
滾壓機構 70
-
dc.language.isozh_TW-
dc.subject有限元素分析zh_TW
dc.subject軟包電池模組zh_TW
dc.subject自動化組裝zh_TW
dc.subject模糊控制zh_TW
dc.subject旋轉折彎zh_TW
dc.subjectRotary bendingen
dc.subjectFuzzy logic controlen
dc.subjectAutomated assemblyen
dc.subjectFinite element methoden
dc.subjectPouch battery moduleen
dc.title軟包電池模組焊接前折彎結構設計與導入平整度控制之研究zh_TW
dc.titleDesign of Pre-Welding Bending Structures and Flatness Control in Pouch Cell Battery Modulesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖國基;徐冠綸zh_TW
dc.contributor.oralexamcommitteeKuo-Chi Liao ;Kuan-Lun Hsuen
dc.subject.keyword軟包電池模組,有限元素分析,旋轉折彎,模糊控制,自動化組裝,zh_TW
dc.subject.keywordPouch battery module,Finite element method,Rotary bending,Fuzzy logic control,Automated assembly,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202503408-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-09-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved