請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98570完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁建均 | zh_TW |
| dc.contributor.advisor | Jian-Jiun Ding | en |
| dc.contributor.author | 游雨婕 | zh_TW |
| dc.contributor.author | Yu-Chieh Yu | en |
| dc.date.accessioned | 2025-08-18T00:55:04Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | X. Mao, Y. Liu, F. Liu, Q. Li, W. Shen, and Y. Wang, “Intriguing findings of frequency selection for image deblurring,” in Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI 2023), 2023, pp. 1234–1241.
D. L. Donoho, "De-noising by soft-thresholding," IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 613–627, May 1995. L. Pan, R. Hartley, M. Liu, and Y. Dai, "Phase-only image based kernel estimation for single image blind deblurring," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 6027–6036. H. Tong, M. Li, H. Zhang, and C. Zhang, "Blur detection for digital images using wavelet transform," in Proceedings of the 2004 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, Jun. 2004, pp. 17–20. S. Cho, S. Ji, J. Hong, S. Jung, and S. Ko, "Rethinking coarse-to-fine approach in single image deblurring," arXiv preprint arXiv:2108.05054, Aug. 2021. [Online]. Available: https://doi.org/10.48550/arXiv.2108.05054 S. Nah, T. H. Kim, and K. M. Lee, "Deep multi-scale convolutional neural network for dynamic scene deblurring," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, Apr. 2004. https://doi.org/10.1109/tip.2003.819861 M. Rakhshanfar and M. A. Amer, "Estimation of Gaussian, Poissonian–Gaussian, and Processed Visual Noise and Its Level Function," IEEE Transactions on Image Processing, vol. 25, no. 9, pp. 4172–4185, Sept. 2016, doi: 10.1109/TIP.2016.2588320. L. Ruan, M. Bemana, H.-P. Seidel, K. Myszkowski, and B. Chen, “Revisiting Image Deblurring with an Efficient ConvNet,” arXiv preprint arXiv:2302.02234, Feb. 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.02234 S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao, “Multi-Stage Progressive Image Restoration,” arXiv preprint arXiv:2102.02808, Mar. 2021. [Online]. Available: https://doi.org/10.48550/arXiv.2102.02808 L. Chen, X. Chu, X. Zhang, and J. Sun, "Simple Baselines for Image Restoration," arXiv preprint arXiv:2204.04676, Apr. 2022. [Online]. Available: https://arxiv.org/abs/2204.04676 C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf, “Learning to deblur,” arXiv preprint arXiv:1406.7444, Jun. 2014. Available: https://doi.org/10.48550/arXiv.1406.7444 K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013, doi: 10.1109/TPAMI.2012.213. D. Krishnan and R. Fergus, “Fast Image Deconvolution using Hyper-Laplacian Priors,” in Advances in Neural Information Processing Systems (NeurIPS), vol. 22, 2009. S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H. Yang, “Restormer: Efficient Transformer for High-Resolution Image Restoration,” arXiv preprint arXiv:2111.09881, Mar. 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2111.09881 Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, and H. Li, “Uformer: A General U-Shaped Transformer for Image Restoration,” arXiv preprint arXiv:2106.03106, Nov. 2021. [Online]. Available: https://doi.org/10.48550/arXiv.2106.03106 C.-L. Liaw, J.-J. Ding, and C.-J. Shih, “Non-blind Deblurring Using Probabilistic Models and Spatial Adaptive Restoration,” in Proc. APSIPA ASC, Jan. 2025, doi: 10.1109/APSIPAASC63619.2025.10849303. J. Rim, H. Lee, J. Won and S. Cho, "Real-World Blur Dataset for Learning and Benchmarking Deblurring Algorithms," Proceedings of the European Conference on Computer Vision (ECCV), pp. 184–201, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-58610-2_16 K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising," IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, Jul. 2017. [Online]. Available: https://doi.org/10.1109/TIP.2017.2662206 K. Zhang, W. Zuo, and L. Zhang, "FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising," IEEE Transactions on Image Processing, vol. 27, no. 9, pp. 4608–4622, Sep. 2018. [Online]. Available: https://doi.org/10.1109/TIP.2018.2839891 T. Huang, G. Yang, and G. Tang, "A Fast Two-Dimensional Median Filtering Algorithm," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 27, no. 1, pp. 13–18, Feb. 1979. [Online]. Available: https://doi.org/10.1109/TASSP.1979.1163209 J. Shi, L. Xu, and J. Jia, "Discriminative Blur Detection Features," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2965–2972, 2014. [Online]. Available: https://doi.org/10.1109/CVPR.2014.379 J. Dong, J. Pan, and Z. Su, "Blur Kernel Estimation via Salient Edges and Low Rank Prior for Blind Image Deblurring," Signal Processing: Image Communication, vol. 59, pp. 33–42, Sep. 2017. [Online]. Available: https://doi.org/10.1016/j.image.2017.07.004 J.-J. Ding, J.-Y. Chang, C.-L. Liao and Z.-H. Tsai, "Image Deblurring Using Local Gaussian Models Based on Noise and Edge Distribution Estimation," TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 2021, pp. 714–719, doi: 10.1109/TENCON54134.2021.9707266. J. Pan, Z. Hu, Z. Su and M.-H. Yang, "Deblurring Text Images via L0-Regularized Intensity and Gradient Prior," 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 2901–2908, doi: 10.1109/CVPR.2014.371. J. Pan, D. Sun, H. Pfister, and M.-H. Yang, “Blind Image Deblurring Using Dark Channel Prior,” openaccess.thecvf.com, 2016. https://openaccess.thecvf.com/content_cvpr_2016/html/Pan_Blind_Image_Deblurring_CVPR_2016_paper.html D. Krishnan, T. Tay and R. Fergus, "Blind deconvolution using a normalized sparsity measure," CVPR 2011, Colorado Springs, CO, USA, 2011, pp. 233–240, doi: 10.1109/CVPR.2011.5995521. D. A. Fish, A. M. Brinicombe, E. R. Pike and J. G. Walker, “Blind deconvolution by means of the Richardson–Lucy algorithm,” Journal of the Optical Society of America A., vol. 12, no. 1, pp. 58–65, 1995. N. Wiener, “Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications,” MIT Press, vol. 8, 1964. K. Shoemake, "Animating Rotation with Quaternion Curves," Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 245–254, 1985. [Online]. Available: https://doi.org/10.1145/325334.325242 T. White, "Sampling Generative Networks," arXiv preprint arXiv:1609.04468, Sep. 2016. [Online]. Available: https://doi.org/10.48550/arXiv.1609.04468 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-Based Learning Applied to Document Recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998. [Online]. Available: https://doi.org/10.1109/5.726791 DPReview, "Fujifilm X-T30 specifications," [Online]. Available: https://www.dpreview.com/products/fujifilm/slrs/fujifilm_xt30/specifications Canon, "EOS 850D Specifications," [Online]. Available: https://www.canon-europe.com/cameras/eos-850d/specifications/ Canon, "EOS M6 Specifications," [Online]. Available: https://www.usa.canon.com/support/p/eos-m6 Panasonic, "Lumix DMC-GF2K Digital Camera Specifications," [Online]. Available: https://www.panasonic.com/global/consumer/lumix/dmc-gf2.html GSMArena, "Apple iPhone 13 mini," [Online]. Available: https://www.gsmarena.com/apple_iphone_13_mini-11103.php J. Howard and S. Ruder, "Universal Language Model Fine-tuning for Text Classification," Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 328–339, 2018. [Online]. Available: https://doi.org/10.18653/v1/P18-1031v S. Lee, H. Chung, J. Kim, and J. C. Ye, "Progressive Deblurring of Diffusion Models for Coarse-to-Fine Image Synthesis," arXiv preprint arXiv:2207.11192, Nov. 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2207.11192 F. Crete, T. Dolmiere, P. Ladret, and M. Nicolas, “The blur effect: perception and estimation with a new no-reference perceptual blur metric,” in Proc. SPIE Human Vision and Electronic Imaging XII, vol. 6492, 2007, pp. 1–11. G. Bradski, “The OpenCV Library,” Dr. Dobb's Journal of Software Tools, 2000. G. Chen, F. Zhu, and P. A. Heng, “An efficient statistical method for image noise level estimation,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 477–485. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98570 | - |
| dc.description.abstract | 在同時存在模糊與雜訊的情況下進行盲影像復原,特別是在低訊噪比條件下,仍是電腦視覺領域中的一大挑戰。這是因為在低訊噪比下,影像中的細節容易被雜訊所干擾。儘管目前許多影像去模糊方法在無雜訊時表現良好,但當影像受到雜訊干擾時,這些方法的效能會顯著下降,限制了它們在夜間攝影、監控影像或醫學影像等真實場景中的應用。
本論文提出一個可適性的影像復原框架,融合了深度神經網路的去雜訊與去模糊功能,並且無需針對不同雜訊程度進行重複訓練。我們發現,如果以「先去雜訊後去模糊」的兩階段流程進行處理,在低訊噪比時其結果並不理想。為了解決上述問題,我們訓練了兩個分別針對高雜與低雜輸入優化的去模糊模型。針對中等雜訊程度的影像,透過兩個模型在潛空間中進行球面內插,實現可適性的影像復原。 此外,本研究亦包含雜訊與模糊程度之估計模型,能判斷個別輸入影像的情況,使模型動態選擇適當的內插比例。為了進行可控且一致的測試,我們於GoPro 資料集上加入不同程度的加性高斯白雜訊(AWGN)。 從量化評估指標如PSNR 與 SSIM 的結果可看出,本方法在各種雜訊條件下皆能展現具競爭力的效能,不僅優於兩階段之方法,也優於現今其他先進的研究。儘管本研究採用合成雜訊,其展現出良好的可解釋性以及對不同劣化條件的可適能力,為混合型影像劣化情境下的盲復原任務提供一套實用且高效的解法。 | zh_TW |
| dc.description.abstract | Blind image restoration in the presence of both blur and noise remains a challenging problem in computer vision, particularly under low signal-to-noise ratio (SNR) conditions where fine image structures are easily overwhelmed by noise. While many existing deblurring methods perform well on clean inputs, their effectiveness drops significantly when the image is degraded by noise, limiting their applicability in real- world scenarios such as night photography, surveillance, or medical imaging.
This thesis proposes an adaptive image restoration framework that integrates denoising and deblurring using deep networks, without requiring exhaustive retraining across noise levels. We begin with a two-stage pipeline: denoising followed by deblurring, as a baseline and demonstrate its limitations in preserving fine image details under low SNR. To address these limitations, we fine-tune two separate deblurring models: one optimized for high-noise inputs and another for low-noise inputs. For intermediate noise levels, we employ spherical interpolation in the latent space between the two models, enabling a continuous and adaptive restoration process without additional training overhead. Our framework also includes noise and blur estimation modules to guide the interpolation dynamically, allowing the system to adjust to unknown and varying degradation levels. For controlled evaluation, we synthetically add Additive White Gaussian Noise (AWGN) to the GoPro dataset, ensuring consistent testing across different noise scenarios. Quantitative results based on Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) show that our method delivers competitive performance compared to baselines and state-of-the-art methods. Despite using synthetic noise, the proposed framework demonstrates a scalable, interpretable, and noise-aware strategy for adaptive blind image restoration under mixed and challenging degradation conditions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:55:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:55:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Problem Statement 1 1.2 Organization of the Thesis 2 Chapter 2 Literature Review and Related Work 3 2.1 Hyper-Laplacian Prior[14] 4 2.2 Learning to Deblur [12] 7 2.3 Deep Multi-Scale CNN for Dynamic Scene Deblurring[6] 8 2.4 MIMO-UNet[5] 9 2.5 DeepRFT[1] 10 2.6 Additional State-of-the-Art Deblurring Methods 12 Chapter 3 Proposed Noise and Blur Degree Estimation 14 3.1 Noise Degree Estimation 14 3.1.1 Noise Estimation Result 18 3.2 Blur Degree Estimation 19 3.2.1 HSV enhancement 25 3.2.2 Blur Estimation Result 27 3.3 The Statistical Properties of Camera Noise 27 3.3.1 Overview 28 3.3.2 Experimental Design and Noise Distribution 28 3.3.3 Variance and Kurtosis under Hyper-Laplacian Assumption 32 Chapter 4 Proposed Blind Deblurring and Denoising for Motion Scenarios 34 4.1 Frequency Selection and Deep Residual Fourier Transform for Deblurring 34 4.1.1 Frequency Selection in Deblurring 35 4.1.2 Res FFT-ReLU Block 36 4.1.3 Loss Function and Fine-tuning Variants 38 4.2 Denoising and Deblurring Results fusion by SLERP 39 4.2.1 Impact of Noise Level on Model Weight 39 4.2.2 Results Fusion by Latent SLERP 43 4.3 Proposed Framework 46 Chapter 5 Experiments and Results 48 5.1 Implementation Details 48 5.1.1 Dataset 48 5.1.2 Evaluation Metrics 50 5.1.3 Training Configuration 50 5.2 Results of Proposed Blind Deblurring and Denoising Method 51 5.2.1 Fixed noise level 51 5.2.2 Mixed Noise Levels 60 5.2.3 Average Runtime for Different Methods 61 5.3 Ablation Study 61 5.3.1 Two-Stage Deblurring 61 5.3.2 Model Weight Interpolation 62 5.3.3 Loss Function Modification 63 5.3.4 Freeze Spatial Weight 64 5.3.5 SLERP both encoder and decoder 65 5.3.6 Guided Filter 66 Chapter 6 Conclusion 68 6.1 Conclusion 68 6.2 Future Work 68 REFERENCE 70 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 模糊估計 | zh_TW |
| dc.subject | 潛在空間球面內插 | zh_TW |
| dc.subject | 雙模型架構 | zh_TW |
| dc.subject | 影像去模糊 | zh_TW |
| dc.subject | 影像去雜訊 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 可適性復原 | zh_TW |
| dc.subject | 盲影像復原 | zh_TW |
| dc.subject | 雜訊估計 | zh_TW |
| dc.subject | deep learning | en |
| dc.subject | dual-model architecture | en |
| dc.subject | blur estimation | en |
| dc.subject | noise estimation | en |
| dc.subject | adaptive restoration | en |
| dc.subject | image deblurring | en |
| dc.subject | blind image restoration | en |
| dc.subject | image denoising | en |
| dc.subject | latent spherical interpolation | en |
| dc.title | 可適性盲式影像去噪與去模糊之深度網路與潛空間球面插值方法 | zh_TW |
| dc.title | Adaptive Blind Image Denoising and Deblurring Using Deep Networks and Latent Spherical Interpolation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭景明;王鵬華;劉俊麟 | zh_TW |
| dc.contributor.oralexamcommittee | Jing-Ming Guo;Peng-Hua Wang;Chun-Lin Liu | en |
| dc.subject.keyword | 影像去模糊,影像去雜訊,深度學習,盲影像復原,可適性復原,雜訊估計,模糊估計,潛在空間球面內插,雙模型架構, | zh_TW |
| dc.subject.keyword | image deblurring,image denoising,deep learning,blind image restoration,adaptive restoration,noise estimation,blur estimation,latent spherical interpolation,dual-model architecture, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202503280 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
