Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98569
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信希zh_TW
dc.contributor.advisorHsin-Hsi Chenen
dc.contributor.author簡志宇zh_TW
dc.contributor.authorChih-Yu Chienen
dc.date.accessioned2025-08-18T00:54:51Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citationTom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/ file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, Zihua Si, Chen Xu, Zhongxiang Sun, Xiao Zhang, and Jun Xu. Uncovering chatgpt's capabilities in recommender systems. In Proceedings of the 17th ACM Conference on Recommender Systems, RecSys ’23, page 1126–1132, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400702419. doi: 10.1145/3604915.3610646. URL https://doi.org/10. 1145/3604915.3610646.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding, 2019. URL https: //arxiv.org/abs/1810.04805.
Yunfan Gao, Tao Sheng, Youlin Xiang, Yun Xiong, Haofen Wang, and Jiawei Zhang. Chat-rec: Towards interactive and explainable llms-augmented recommender system, 2023. URL https://arxiv.org/abs/2303.14524.
Zhaolin Gao, Joyce Zhou, Yijia Dai, and Thorsten Joachims. End-to-end training for recommendation with language-based user profiles, 2025. URL https://arxiv.org/ abs/2410.18870.
Huifeng Guo, Ruiming TANG, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: A factorization-machine based neural network for ctr prediction. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pages 1725–1731, 2017. doi: 10.24963/ijcai.2017/239. URL https://doi.org/10. 24963/ijcai.2017/239.
Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web, WWW ’17, page 173–182. International World Wide Web Conferences Steering Committee, 2017a. ISBN 9781450349130. doi: 10.1145/3038912.3052569. URL https://doi.org/10.1145/3038912.3052569.
Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collaborative filtering, 2017b. URL https://arxiv.org/abs/1708.05031.
Zhankui He, Zhouhang Xie, Rahul Jha, Harald Steck, Dawen Liang, Yesu Feng, Bodhisattwa Prasad Majumder, Nathan Kallus, and Julian Mcauley. Large language models as zero-shot conversational recommenders. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM ’23, page 720–730, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701245. doi: 10.1145/3583780.3614949. URL https://doi.org/ 10.1145/3583780.3614949.
Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An algorithmic framework for performing collaborative filtering. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’99, page 230–237, New York, NY, USA, 1999. Association for Computing Machinery. ISBN 1581130961. doi: 10.1145/312624.312682. URL https://doi.org/10.1145/312624.312682.
Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong Wen. Towards universal sequence representation learning for recommender systems, 2022. Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE International Conference on Data Mining (ICDM), pages 197–206, 2018. doi: 10.1109/ICDM.2018.00035.
Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy, Lichan Hong, Ed Chi, and Derek Zhiyuan Cheng. Do llms understand user preferences? evaluating llms on user rating prediction, 2023. URL https://arxiv.org/abs/2305.06474.
Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30–37, 2009. doi: 10.1109/MC.2009.263.
Chuang Li, Yang Deng, Hengchang Hu, Min-Yen Kan, and Haizhou Li. ChatCRS: Incorporating external knowledge and goal guidance for LLM-based conversational recommender systems. In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors, Findings of the Association for Computational Linguistics: NAACL 2025, pages 295–312, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. URL https://aclanthology.org/2025.findings-naacl. 17/.
Tingting Liang, Chenxin Jin, Lingzhi Wang, Wenqi Fan, Congying Xia, Kai Chen, and Yuyu Yin. LLM-REDIAL: A large-scale dataset for conversational recommender systems created from user behaviors with LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the Association for Computational Linguistics: ACL 2024, pages 8926–8939, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.529. URL https:// aclanthology.org/2024.findings-acl.529/.
Junling Liu, Chao Liu, Peilin Zhou, Renjie Lv, Kang Zhou, and Yan Zhang. Is chatgpt a good recommender? a preliminary study, 2023a. URL https://arxiv.org/abs/ 2304.10149.Tingting Liang, Chenxin Jin, Lingzhi Wang, Wenqi Fan, Congying Xia, Kai Chen, and Yuyu Yin. LLM-REDIAL: A large-scale dataset for conversational recommender systems created from user behaviors with LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the Association for Computational Linguistics: ACL 2024, pages 8926–8939, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.529. URL https:// aclanthology.org/2024.findings-acl.529/.
Peng Liu, Lemei Zhang, and Jon Atle Gulla. Pre-train, prompt, and recommendation: A comprehensive survey of language modeling paradigm adaptations in recommender systems. Transactions of the Association for Computational Linguistics, 11:1553– 1571, 2023b. doi: 10.1162/tacl_a_00619. URL https://aclanthology.org/2023. tacl-1.88/.
Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-based Recommender Systems: State of the Art and Trends, pages 73–105. Springer US, Boston, MA, 2011. ISBN 978-0-387-85820-3. doi: 10.1007/978-0-387-85820-3_3. URL https://doi.org/10.1007/978-0-387-85820-3_3.
M. H. Maqbool, Umar Farooq, Adib Mosharrof, A. B. Siddique, and Hassan Foroosh. Mobilerec: A large scale dataset for mobile apps recommendation. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’23, page 3007–3016, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450394086. doi: 10.1145/3539618. 3591906. URL https://doi.org/10.1145/3539618.3591906.
Bamshad Mobasher, Robert Cooley, and Jaideep Srivastava. Automatic personalization based on web usage mining. Commun. ACM, 43(8):142–151, August 2000. ISSN 0001- 0782. doi: 10.1145/345124.345169. URL https://doi.org/10.1145/345124. 345169.
Raymond J. Mooney and Loriene Roy. Content-based book recommending using learning for text categorization. In Proceedings of the Fifth ACM Conference on Digital Libraries, DL ’00, page 195 – 204, New York, NY, USA, 2000. Association for Computing Machinery. ISBN 158113231X. doi: 10.1145/336597.336662. URL https://doi.org/10.1145/336597.336662.
Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantlylabeled reviews and fine-grained aspects. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 188–197, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1018. URL https://aclanthology.org/D19-1018/.
Zhaopeng Qiu, Xian Wu, Jingyue Gao, and Wei Fan. U-bert: Pre-training user representations for improved recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 4320–4327, 2021.
Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-training. 2018. URL https://api.semanticscholar.org/CorpusID: 49313245.
Filip Radlinski, Krisztian Balog, Fernando Diaz, Lucas Dixon, and Ben Wedin. On natural language user profiles for transparent and scrutable recommendation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’22, page 2863–2874, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450387323. doi: 10.1145/3477495. 3531873. URL https://doi.org/10.1145/3477495.3531873.
Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web, WWW ’01, page 285–295, New York, NY, USA, 2001a. Association for Computing Machinery. ISBN 1581133480. doi: 10.1145/ 371920.372071. URL https://doi.org/10.1145/371920.372071.
Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, pages 285–295, 2001b.
Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009, 2009.
Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM ’19, page 1441–1450, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450369763. doi: 10.1145/ 3357384.3357895. URL https://doi.org/10.1145/3357384.3357895.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/ 2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
Yancheng Wang, Ziyan Jiang, Zheng Chen, Fan Yang, Yingxue Zhou, Eunah Cho, Xing Fan, Xiaojiang Huang, Yanbin Lu, and Yingzhen Yang. Recmind: Large language model powered agent for recommendation, 2024a.
Zhefan Wang, Yuanqing Yu, Wendi Zheng, Weizhi Ma, and Min Zhang. Macrec: A multiagent collaboration framework for recommendation. In SIGIR, page 2760–2764, 2024b.
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. A survey on largelanguage models for recommendation, 2024. URL https://arxiv.org/abs/2305.19860.
Fan Yang, Zheng Chen, Ziyan Jiang, Eunah Cho, Xiaojiang Huang, and Yanbin Lu. Palr: Personalization aware llms for recommendation, 2023.
Lei Zheng, Vahid Noroozi, and Philip S. Yu. Joint deep modeling of users and items using reviews for recommendation. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM ’17, page 425–434, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450346757. doi: 10.1145/3018661.3018665. URL https://doi.org/10.1145/3018661.3018665.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98569-
dc.description.abstract隨著大語言模型(Large Language Models)的發展,LLM展現出強悍的語言理解以及推理能力,因此近期越來越多研究關注應用LLM於個人化的推薦系統。相關的研究分析使用者(user)和產品(item)間的互動,利用多樣的模型來建立個人化的系統。然而,隨著影響使用者行為的因數增多,如複雜的產品規格、個人偏好差異以及非結構化資料的呈現等,推薦的難度也會加大。此外,研究如何分析使用者的隱性偏好來推薦對規格敏感的產品,仍有待進一步探索。本論文提出一個新穎的框架,利用基於提示的策略分析使用者針對互動產品的評論以及產品規格資訊,分別用於建立使用者輪廓以及產品輪廓。憑藉大語言模型卓越的理解能力,這些檔案可以細微地捕捉到使用者的隱性偏好,並藉此在下游任務中進行推薦(如評分預測和產品推薦)—這些任務對提高個人化體驗至關重要。實驗結果顯示,本論文所提出的框架在評分預測任務中表現優異,能夠有效處理產品的複雜規格和使用者偏好,並且在對話式推薦中能根據對話中提供的資訊進行有效的產品推薦。zh_TW
dc.description.abstractRecently, there has been an increasing focus in research on the potential applications of large language models (LLMs) for personalized recommendations. Previous studies utilize LLMs to analyze the interaction between users and products to establish various personalized recommendation systems. However, recommendation becomes particularly challenging when items are associated with varied attributes, influenced by personal preferences, and described primarily through unstructured data. Moreover, analyzing implicit user preferences with product specifications for specification-sensitive recommendations remains largely unexplored. In this paper, we propose a framework that fully leverages prompting-based strategies to analyze user reviews and item attributes for the generation of user and product profiles, respectively. These profiles capture users' implicit preferences and enable rating prediction or product recommendation, which are crucial for personalized recommendations. Experimental results show that our proposed framework effectively handles complex item attributes and user preferences to achieve promising performances in rating prediction and can retrieve candidate products based on dialogues in conversational recommendations well.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:54:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T00:54:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要iii
Abstract iv
Contents vi
List of Figures ix
List of Tables x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 4
Chapter 2 Related Work 6
2.1 Recommendation System 6
2.1.1 Collaborative Filtering 6
2.1.2 Content-Based Filtering 7
2.2 Large Language Models for Recommendation 8
2.2.1 Large Language Models 8
2.2.2 Bridging LLMs with Recommendation System 9
2.3 Natural Language User Profile 10
2.3.1 User Profiling 10
2.3.2 Impact of Natural Language User Profile 11
Chapter 3 Methodology 13
3.1 Core Concepts 13
3.2 User Profile Generator 15
3.2.1 Content of User Profile 15
3.2.2 Aggregation-Based Profiling 16
3.3 Product Profile Generator 17
3.3.1 Content of Product Profile 17
3.3.2 Profile Construction with Template 17
3.4 Recommender 18
3.4.1 Rating Prediction 18
3.4.2 Conversational Recommendation 19
Chapter 4 Experiments 22
4.1 Dataset and Data Preprocessing 22
4.2 Rating Prediction 23
4.2.1 Rating Prediction – Key Findings 26
4.3 Conversational Recommendation 28
4.3.1 Conversational Recommendation – Key Findings 29
Chapter 5 Analysis and Discussion 31
5.1 Impact of Review Quantity 31
5.2 Impact of Model Capability 33
5.2.1 Rating Prediction 33
5.2.2 Conversational Recommendation 34
5.3 Ablation Studies 35
5.3.1 Similarity Signal Ablation 35
5.3.2 Pure Historical Interactions as Profile 36
5.3.2.1 Rating Prediction 37
5.3.2.2 Conversational Recommendation 38
5.4 Framework Generalization Analysis 39
5.4.1 Rating Prediction 39
5.4.2 Conversational Recommendation 40
5.5 Case Study 41
Chapter 6 Conclusion 44
Chapter 7 Limitation and Future Work 46
7.1 Limitation 46
7.2 Future Work 46
References 48
-
dc.language.isoen-
dc.subject推薦系統zh_TW
dc.subject大型語言模型zh_TW
dc.subject對話式推薦zh_TW
dc.subject評分預測zh_TW
dc.subject使用者輪廓zh_TW
dc.subjectUser Profilingen
dc.subjectRating Predictionen
dc.subjectConversational Recommendationen
dc.subjectRecommendation Systemen
dc.subjectLarge Language Modelen
dc.title基於大語言模型提示技術與使用者輪廓的規格敏感性商品推薦研究zh_TW
dc.titleUser Profiling for Specification-Sensitive Recommendations with Large Language Model Promptingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭卜壬;陳建錦;古倫維zh_TW
dc.contributor.oralexamcommitteePu-Jen Cheng;Chien Chin Chen;Lun-Wei Kuen
dc.subject.keyword大型語言模型,推薦系統,使用者輪廓,評分預測,對話式推薦,zh_TW
dc.subject.keywordLarge Language Model,Recommendation System,User Profiling,Rating Prediction,Conversational Recommendation,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202503428-
dc.rights.note未授權-
dc.date.accepted2025-08-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved