請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98568完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃彥婷 | zh_TW |
| dc.contributor.advisor | Yen-Ting Hwang | en |
| dc.contributor.author | 陳勇志 | zh_TW |
| dc.contributor.author | Yong-Jhih Chen | en |
| dc.date.accessioned | 2025-08-18T00:54:38Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | Adam, O., Bischoff, T., &Schneider, T. (2016). Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ. Journal of Climate, 29(20), 7281–7293. https://doi.org/10.1175/JCLI-D-15-0710.1
Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N. C., &Scott, J. D. (2002). The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. Journal of Climate, 15(16), 2205–2231. https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 Andrews, T., Gregory, J. M., &Webb, M. J. (2015). The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. Journal of Climate, 28(4), 1630–1648. https://doi.org/10.1175/JCLI-D-14-00545.1 Andrews, T., &Webb, M. J. (2018). The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical pacific warming. Journal of Climate, 31(2), 641–654. https://doi.org/10.1175/JCLI-D-17-0087.1 Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A., &Newsom, E. R. (2016). Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9(7), 549–554. https://doi.org/10.1038/ngeo2731 Armour, K. C., Siler, N., Donohoe, A., &Roe, G. H. (2019). Meridional Atmospheric Heat Transport Constrained by Energetics and Mediated by Large-Scale Diffusion. Journal of Climate, 32, 3655–3680. https://doi.org/10.1175/JCLI-D-18-0563.1 Biasutti, M., Voigt, A., Boos, W. R., Braconnot, P., Hargreaves, J. C., Harrison, S. P., Kang, S. M., Mapes, B. E., Scheff, J., Schumacher, C., Sobel, A. H., &Xie, S. P. (2018). Global energetics and local physics as drivers of past, present and future monsoons. Nature Geoscience, 11(6), 392–400. https://doi.org/10.1038/s41561-018-0137-1 Bischoff, T., &Schneider, T. (2016). The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. Journal of Climate, 29(8), 2997–3013. https://doi.org/10.1175/JCLI-D-15-0328.1 Bjerknes, J. (1969). Atmospheric Teleconnections From the Equatorial Pacific. Monthly Weather Review, 97(3), 163–172. http://journals.ametsoc.org/doi/abs/10.1175/1520-0493(1969)097%3C0163:ATFTEP%3E2.3.CO;2 Boos, W. R., &Korty, R. L. (2016). Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nature Geoscience, 9(12), 892–897. https://doi.org/10.1038/ngeo2833 Byrne, M. P., &O’Gorman, P. A. (2018). Trends in continental temperature and humidity directly linked to ocean warming. Proceedings of the National Academy of Sciences of the United States of America, 115(19), 4863–4868. https://doi.org/10.1073/pnas.1722312115 Ceppi, P., &Gregory, J. M. (2017). Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proceedings of the National Academy of Sciences of the United States of America, 114(50), 13126–13131. https://doi.org/10.1073/pnas.1714308114 Ceppi, P., &Hartmann, D. L. (2016). Clouds and the Atmospheric Circulation Response to Warming. Journal of Climate, 29(January), 783–799. https://doi.org/10.1175/JCLI-D-15-0394.1 Chen, Y. J., Hwang, Y. T., &Lu, J. (2024). Robust increase in South Asian monsoon rainfall under warming driven by extratropical clouds and ocean. Npj Climate and Atmospheric Science, 7(1). https://doi.org/10.1038/s41612-024-00843-7 Cherchi, A., Alessandri, A., Masina, S., &Navarra, A. (2011). Effects of increased CO2 levels on monsoons. Climate Dynamics, 37(1), 83–101. https://doi.org/10.1007/s00382-010-0801-7 Chiang, J. C. H., &Friedman, A. R. (2012). Extratropical Cooling, Interhemispheric Thermal Gradients, and Tropical Climate Change. Annual Review of Earth and Planetary Sciences, 40(1), 383–412. https://doi.org/10.1146/annurev-earth-042711-105545 Chou, C., &Chen, C. A. (2010). Depth of convection and the weakening of tropical circulation in Global Warming. Journal of Climate, 23(11), 3019–3030. https://doi.org/10.1175/2010JCLI3383.1 Christensen, J. H., Kanikicharla, K. K., Aldrian, E., An, S.Il, Albuquerque Cavalcanti, I. F., deCastro, M., Dong, W., Goswami, P., Hall, A., Kanyanga, J. K., Kitoh, A., Kossin, J., Lau, N. C., Renwick, J., Stephenson, D. B., Xie, S. P., Zhou, T., Abraham, L., Ambrizzi, T., …Zou, L. (2013). Climate phenomena and their relevance for future regional climate change. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 9781107057, 1217–1308. https://doi.org/10.1017/CBO9781107415324.028 Chung, E. S., Timmermann, A., Soden, B. J., Ha, K. J., Shi, L., &John, V. O. (2019). Reconciling opposing Walker circulation trends in observations and model projections. Nature Climate Change, 9(5), 405–412. https://doi.org/10.1038/s41558-019-0446-4 Clement, A. C., Seager, R., Cane, M. A., &Zebiak, S. E. (1996). An Ocean Dynamical Thermostat. Journal of Cl, 9, 2190–2196. http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI Coats, S., &Karnauskas, K. B. (2017). Are Simulated and Observed Twentieth Century Tropical Pacific Sea Surface Temperature Trends Significant Relative to Internal Variability? Geophysical Research Letters, 44(19), 9928–9937. https://doi.org/10.1002/2017GL074622 Colman, R., &Soden, B. J. (2021). Water vapor and lapse rate feedbacks in the climate system. Reviews of Modern Physics, 93(4), 45002. https://doi.org/10.1103/RevModPhys.93.045002 Donohoe, A., Marshall, J., Ferreira, D., &Mcgee, D. (2013). The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the last glacial maximum. Journal of Climate, 26(11), 3597–3618. https://doi.org/10.1175/JCLI-D-12-00467.1 Douglas, I. (2009). Climate change, flooding and food security in south Asia. Food Security, 1(2), 127–136. https://doi.org/10.1007/s12571-009-0015-1 Endo, H., &Kitoh, A. (2014). Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophysical Research Letters, 41, 1704–1710. https://doi.org/10.1002/2013GL059158 England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A.Sen, McPhaden, M. J., Purich, A., &Santoso, A. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4(3), 222–227. https://doi.org/10.1038/NCLIMATE2106 Freychet, N., Hsu, H. H., Chou, C., &Wu, C. H. (2015). Asian summer monsoon in CMIP5 projections: A link between the change in extreme precipitation and monsoon dynamics. Journal of Climate, 28(4), 1477–1493. https://doi.org/10.1175/JCLI-D-14-00449.1 Frierson, D. M. W., &Hwang, Y. T. (2012). Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. Journal of Climate, 25(2), 720–733. https://doi.org/10.1175/JCLI-D-11-00116.1 Ganguly, D., Rasch, P. J., Wang, H., &Yoon, J. H. (2012). Climate response of the South Asian monsoon system to anthropogenic aerosols. Journal of Geophysical Research Atmospheres, 117(13), 1–20. https://doi.org/10.1029/2012JD017508 Geen, R., Bordoni, S., Battisti, D. S., &Hui, K. (2020). Monsoons, ITCZs, and the Concept of the Global Monsoon. Reviews of Geophysics, 58(4), 1–45. https://doi.org/10.1029/2020RG000700 Gu, D., &Philander, S. G. H. (1997). Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275(5301), 805–807. https://doi.org/10.1126/science.275.5301.805 Han, X., Feng, J., Lu, Y., &Hu, D. (2024). Variability of the Pacific subtropical cells under global warming in CMIP6 models. Journal of Oceanology and Limnology, 42(1), 24–40. https://doi.org/10.1007/s00343-023-2315-2 Hawcroft, M., Haywood, J. M., Collins, M., Jones, A., Jones, A. C., &Stephens, G. (2017). Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model. Climate Dynamics, 48(7–8), 2279–2295. https://doi.org/10.1007/s00382-016-3205-5 He, C., Liu, Z., &Hu, A. (2019). The transient response of atmospheric and oceanic heat transports to anthropogenic warming. Nature Climate Change, 9(March). https://doi.org/10.1038/s41558-018-0387-3 Heede, U. K., &Fedorov, A.V. (2021). Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nature Climate Change, 11(8), 696–703. https://doi.org/10.1038/s41558-021-01101-x Heede, U. K., &Fedorov, A.V. (2023). Colder Eastern Equatorial Pacific and Stronger Walker Circulation in the Early 21st Century: Separating the Forced Response to Global Warming From Natural Variability. Geophysical Research Letters, 50(3). https://doi.org/10.1029/2022GL101020 Heede, U. K., Fedorov, A.V., &Burls, N. J. (2020). Time Scales and Mechanisms for the Tropical Pacific Response to Global Warming: A Tug of War between the Ocean Thermostat and Weaker Walker. Journal of Climate, 33(14), 6101–6118. https://doi.org/10.1175/JCLI-D-19-0690.1 Heede, U. K., Fedorov, A.V., &Burls, N. J. (2021). A stronger versus weaker Walker: understanding model differences in fast and slow tropical Pacific responses to global warming. Climate Dynamics, 57(9–10), 2505–2522. https://doi.org/10.1007/s00382-021-05818-5 Held, I. M., &Soden, B. J. (2000). Water Vapor Feedback and Global Warming. Annual Review of Environment and Resources, 25, 441–475. Held, I. M., &Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21), 5686–5699. https://doi.org/10.1175/JCLI3990.1 Hu, S., Xie, S. P., &Kang, S. M. (2022). Global Warming Pattern Formation: The Role of Ocean Heat Uptake. Journal of Climate, 35(6), 1885–1899. https://doi.org/10.1175/JCLI-D-21-0317.1 Hu, Z. Z., Latif, M., Roeckner, E., &Bengtsson, L. (2000). Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophysical Research Letters, 27(17), 2681–2684. https://doi.org/10.1029/2000GL011550 Huang, Y., &Zhang, M. (2014). The implication of radiative forcing and feedback for meridional energy transport. Geophysical Prospecting, 1665–1672. https://doi.org/10.1002/2013GL059079 Jeevanjee, N. (2022). Three Rules for the Decrease of Tropical Convection With Global Warming. Journal of Advances in Modeling Earth Systems, 14(11). https://doi.org/10.1029/2022MS003285 Jiang, Y., Li, J., Wang, B., Yang, Y., &Zhu, Z. (2023). Weakening of decadal variation of Northern Hemisphere land monsoon rainfall under global warming. Npj Climate and Atmospheric Science, 6(1), 1–9. https://doi.org/10.1038/s41612-023-00441-z Jiang, Y., Zhu, Z., Li, J., Miao, L., &Miao, Z. (2023). Changes of mean and extreme precipitation and their relationship in Northern Hemisphere land monsoon domain under global warming. International Journal of Climatology, 43(12), 5536–5552. https://doi.org/10.1002/joc.8159 Joshi, M. M., Gregory, J. M., Webb, M. J., Sexton, D. M. H., &Johns, T. C. (2008). Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dynamics, 30(5), 455–465. https://doi.org/10.1007/s00382-007-0306-1 Kang, S. M., Frierson, D. M. W., &Held, I. M. (2009). The Tropical Response to Extratropical Thermal Forcing in an Idealized GCM: The Importance of Radiative Feedbacks and Convective Parameterization. Journal of the Atmospheric Sciences, 66(9), 2812–2827. https://doi.org/10.1175/2009JAS2924.1 Kang, S. M., Held, I. M., Frierson, D. M. W., &Zhao, M. (2008). The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. Journal of Climate, 21(14), 3521–3532. https://doi.org/10.1175/2007JCLI2146.1 Kang, S. M., Xie, S. P., Shin, Y., Kim, H., Hwang, Y. T., Stuecker, M. F., Xiang, B., &Hawcroft, M. (2020). Walker circulation response to extratropical radiative forcing. Science Advances, 6(47), 1–8. https://doi.org/10.1126/sciadv.abd3021 Kay, J. E., Wall, C., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P., &Bitz, C. (2016). Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). Journal of Climate, 29(12), 4617–4636. https://doi.org/10.1175/JCLI-D-15-0358.1 Keshtgar, B., Alizadeh-Choobari, O., &Irannejad, P. (2020). Seasonal and interannual variations of the intertropical convergence zone over the Indian Ocean based on an energetic perspective. Climate Dynamics, 54(7–8), 3627–3639. https://doi.org/10.1007/s00382-020-05195-5 Kjellsson, J. (2015). Weakening of the global atmospheric circulation with global warming. Climate Dynamics, 45(3–4), 975–988. https://doi.org/10.1007/s00382-014-2337-8 Kosaka, Y., &Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467), 403–407. https://doi.org/10.1038/nature12534 Krishnan, R., Sabin, T. P., Ayantika, D. C., Kitoh, A., Sugi, M., Murakami, H., Turner, A. G., Slingo, J. M., &Rajendran, K. (2013). Will the South Asian monsoon overturning circulation stabilize any further? Climate Dynamics, 40(1–2), 187–211. https://doi.org/10.1007/s00382-012-1317-0 Latif, M., Roeckner, E., Botzet, M., Esch, M., Haak, H., Hagemann, S., Jungclaus, J., Legutke, S., Marsland, S., Mikolajewicz, U., &Mitchell, J. (2004). Reconstructing , Monitoring , and Predicting Multidecadal-Scale Changes in the North Atlantic Thermohaline Circulation with Sea Surface Temperature. Journal of Climate, 17, 1605–1614. Lau, W. K. M., &Kim, K. M. (2017). Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall. Asia-Pacific Journal of Atmospheric Sciences, 53(2), 181–194. https://doi.org/10.1007/s13143-017-0033-4 Lee, D., Min, S. K., Fischer, E., Shiogama, H., Bethke, I., Lierhammer, L., &Scinocca, J. F. (2018). Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics. Environmental Research Letters, 13(4). https://doi.org/10.1088/1748-9326/aab55d Li, Q., Luo, Y., Lu, J., &Liu, F. (2022). The Role of Ocean Circulation in Southern Ocean Heat Uptake, Transport, and Storage Response to Quadrupled CO2. Journal of Climate, 35(22), 3565–3582. https://doi.org/10.1175/JCLI-D-22-0160.1 Li, R., Lv, S., Han, B., Gao, Y., &Meng, X. (2017). Projections of South Asian summer monsoon precipitation based on 12 CMIP5 models. International Journal of Climatology, 37(1), 94–108. https://doi.org/10.1002/joc.4689 Li, X., Ting, M., Li, C., &Henderson, N. (2015). Mechanisms of Asian Summer Monsoon Changes in Response to Anthropogenic Forcing in CMIP5 Models*. Journal of Climate, 28(10), 4107–4125. https://doi.org/10.1175/jcli-d-14-00559.1 Li, Z., Sun, Y., Li, T., Chen, W., &Ding, Y. (2021). Projections of south Asian summer monsoon under global warming from 1.5° to 5°C. Journal of Climate, 34(19), 7913–7926. https://doi.org/10.1175/JCLI-D-20-0547.1 Liu, W., Lu, J., Xie, S. P., &Fedorov, A. (2018). Southern Ocean Heat Uptake, redistribution, and storage in a warming climate: The role of meridional overturning circulation. Journal of Climate, 31(12), 4727–4743. https://doi.org/10.1175/JCLI-D-17-0761.1 Liu, Z., Vavrus, S., He, F., Wen, N., &Zhong, Y. (2005). Rethinking tropical ocean response to global warming: The enhanced equatorial warming. Journal of Climate, 18(22), 4684–4700. https://doi.org/10.1175/JCLI3579.1 Lu, J., Xue, D., Leung, L. R., Liu, F., Song, F., Harrop, B., &Zhou, W. (2021). The Leading Modes of Asian Summer Monsoon Variability as Pulses of Atmospheric Energy Flow. Geophysical Research Letters, 48(5). https://doi.org/10.1029/2020GL091629 Lu, K., He, J., Fosu, B., &Rugenstein, M. (2021). Mechanisms of Fast Walker Circulation Responses to CO2 Forcing. Geophysical Research Letters, 48(23), 1–11. https://doi.org/10.1029/2021GL095708 Luo, Y., Lu, J., Liu, F., &Garuba, O. (2017). The role of ocean dynamical thermostat in delaying the El Niño-Like response over the equatorial Pacific to climate warming. Journal of Climate, 30(8), 2811–2827. https://doi.org/10.1175/JCLI-D-16-0454.1 Ma, J., Chadwick, R., Seo, K. H., Dong, C., Huang, G., Foltz, G. R., &Jiang, J. H. (2018). Responses of the Tropical Atmospheric Circulation to Climate Change and Connection to the Hydrological Cycle. Annual Review of Earth and Planetary Sciences, 46, 549–580. https://doi.org/10.1146/annurev-earth-082517-010102 Ma, J., Xie, S. P., &Kosaka, Y. (2012). Mechanisms for tropical tropospheric circulation change in response to global warming. Journal of Climate, 25(8), 2979–2994. https://doi.org/10.1175/JCLI-D-11-00048.1 Mamalakis, A., Randerson, J. T., Yu, J. Y., Pritchard, M. S., Magnusdottir, G., Smyth, P., Levine, P. A., Yu, S., &Foufoula-Georgiou, E. (2021). Zonally contrasting shifts of the tropical rain belt in response to climate change. Nature Climate Change, 11(2), 143–151. https://doi.org/10.1038/s41558-020-00963-x McFarlane, A. A., &Frierson, D. M. W. (2017). The role of ocean fluxes and radiative forcings in determining tropical rainfall shifts in RCP8.5 simulations. Geophysical Research Letters, 44(16), 8656–8664. https://doi.org/10.1002/2017GL074473 McGee, D., Donohoe, A., Marshall, J., &Ferreira, D. (2014). Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth and Planetary Science Letters, 390, 69–79. https://doi.org/10.1016/j.epsl.2013.12.043 McGregor, S., Timmermann, A., Stuecker, M. F., England, M. H., Merrifield, M., Jin, F.-F., &Chikamoto, Y. (2014). Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4(August). https://doi.org/10.1038/NCLIMATE2330 Mechoso, C. R., Losada, T., Koseki, S., Mohino-Harris, E., Keenlyside, N., Castaño-Tierno, A., Myers, T. A., Rodriguez-Fonseca, B., &Toniazzo, T. (2016). Can reducing the incoming energy flux over the Southern Ocean in a CGCM improve its simulation of tropical climate? Geophysical Research Letters, 43(20), 11,057-11,063. https://doi.org/10.1002/2016GL071150 Menon, A., Levermann, A., Schewe, J., Lehmann, J., &Frieler, K. (2013). Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth System Dynamics, 4(2), 287–300. https://doi.org/10.5194/esd-4-287-2013 Morrison, A. K., Griffies, S. M., Winton, M., Anderson, W. G., &Sarmiento, J. L. (2016). Mechanisms of Southern Ocean heat uptake and transport in a global eddying climate model. Journal of Climate, 29(6), 2059–2075. https://doi.org/10.1175/JCLI-D-15-0579.1 Nicknish, P. A., Chiang, J. C. H., Hu, A., &Boos, W. R. (2023). Regional tropical rainfall shifts under global warming: an energetic perspective. Environmental Research: Climate, 2(1), 015007. https://doi.org/10.1088/2752-5295/acb9b0 Pearce, F. A., &Bodas-Salcedo, A. (2023). Implied Heat Transport from CERES Data: Direct Radiative Effect of Clouds on Regional Patterns and Hemispheric Symmetry. Journal of Climate, 36(12), 4019–4030. https://doi.org/10.1175/jcli-d-22-0149.1 Pendergrass, A. G., Conley, A., &Vitt, F. (2017). Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth System Science Data Discussions, 5(October), 1–14. Polson, D., Bollasina, M., Hegerl, G. C., &Wilcox, L. J. (2014). Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophysical Research Letters, 41(16), 6023–6029. https://doi.org/10.1002/2014GL060811 Ramesh, N., &Boos, W. R. (2022). The Unexpected Oceanic Peak in Energy Input to the Atmosphere and Its Consequences for Monsoon Rainfall. Geophysical Research Letters, 49(12). https://doi.org/10.1029/2022GL099283 Roxy, M. K., Ritika, K., Terray, P., Murtugudde, R., Ashok, K., &Goswami, B. N. (2015). Drying of Indian subcontinent by rapid Indian ocean warming and a weakening land-sea thermal gradient. Nature Communications, 6(May). https://doi.org/10.1038/ncomms8423 Rugenstein, M., Dhame, S., Olonscheck, D., Wills, R. J., Watanabe, M., &Seager, R. (2023). Connecting the SST Pattern Problem and the Hot Model Problem. Geophysical Research Letters, 50(22). https://doi.org/10.1029/2023GL105488 Sandeep, S., &Ajayamohan, R. S. (2015). Poleward shift in Indian summer monsoon low level jetstream under global warming. Climate Dynamics, 45(1–2), 337–351. https://doi.org/10.1007/s00382-014-2261-y Sandeep, S., Ajayamohan, R. S., Boos, W. R., Sabin, T. P., &Praveen, V. (2018). Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate. Proceedings of the National Academy of Sciences of the United States of America, 115(11), 2681–2686. https://doi.org/10.1073/pnas.1709031115 Schneider, T., Bischoff, T., &Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513(7516), 45–53. https://doi.org/10.1038/nature13636 Seager, R., Henderson, N., &Cane, M. (2022). Persistent Discrepancies between Observed and Modeled Trends in the Tropical Pacific Ocean. Journal of Climate, 35(14), 4571–4584. https://doi.org/10.1175/JCLI-D-21-0648.1 Seager, R., Naik, N., &Vecchi, G. A. (2010). Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. Journal of Climate, 23(17), 4651–4668. https://doi.org/10.1175/2010JCLI3655.1 Shepherd, T. G. (2014). Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geoscience, 7(10), 703–708. https://doi.org/10.1038/NGEO2253 Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J., Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L., Hausfather, Z., von derHeydt, A. S., Knutti, R., Mauritsen, T., …Zelinka, M. D. (2020). An Assessment of Earth’s Climate Sensitivity Using Multiple Lines of Evidence. Reviews of Geophysics, 58(4), 1–93. https://doi.org/10.1029/2019RG000678 Singh, D., Ghosh, S., Roxy, M. K., &McDermid, S. (2019). Indian summer monsoon: Extreme events, historical changes, and role of anthropogenic forcings. WIREs Climate Change, 10(2), e571. https://doi.org/https://doi.org/10.1002/wcc.571 Sooraj, K. P., Terray, P., &Mujumdar, M. (2015). Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Climate Dynamics, 45(1–2), 233–252. https://doi.org/10.1007/s00382-014-2257-7 Steinert, N. J., Cuesta-Valero, F. J., García-Pereira, F., deVrese, P., Melo Aguilar, C. A., García-Bustamante, E., Jungclaus, J., &González-Rouco, J. F. (2024). Underestimated Land Heat Uptake Alters the Global Energy Distribution in CMIP6 Climate Models. Geophysical Research Letters, 51(10). https://doi.org/10.1029/2023GL107613 Stellema, A., SenGupta, A., Taschetto, A. S., &Feng, M. (2022). Pacific Equatorial Undercurrent: Mean state, sources, and future changes across models. Frontiers in Climate, 4. https://doi.org/10.3389/fclim.2022.933091 Thomas, M. D., &Fedorov, A.V. (2017). The eastern subtropical pacific origin of the equatorial cold bias in climate models: A Lagrangian perspective. Journal of Climate, 30(15), 5885–5900. https://doi.org/10.1175/JCLI-D-16-0819.1 Toda, M., Watanabe, M., &Yoshimori, M. (2021). An energy budget framework to understand mechanisms of land ocean warming contrast induced by increasing greenhouse gases part i near-equilibrium state. Journal of Climate, 34(23), 9279–9292. https://doi.org/10.1175/JCLI-D-21-0302.1 Toda, M., Yoshimori, M., &Watanabe, M. (2023). An Energy Budget Framework to Understand Mechanisms of Land–Ocean Warming Contrast Induced by Increasing Greenhouse Gases. Part II: Transient Climate State. Journal of Climate, 36(13), 4307–4326. https://doi.org/10.1175/JCLI-D-22-0483.1 Tomas, R. A., Deser, C., &Sun, L. (2016). The role of ocean heat transport in the global climate response to projected arctic sea ice loss. Journal of Climate, 29(19), 6841–6859. https://doi.org/10.1175/JCLI-D-15-0651.1 Tseng, H. Y., Hwang, Y. T., Xie, S. P., Tseng, Y. H., Kang, S. M., Luongo, M. T., &Eisenman, I. (2023). Fast and Slow Responses of the Tropical Pacific to Radiative Forcing in Northern High Latitudes. Journal of Climate, 36(16), 5337–5349. https://doi.org/10.1175/JCLI-D-22-0622.1 Turner, A. G., &Annamalai, H. (2012). Climate change and the South Asian summer monsoon. Nature Climate Change, 2(8), 587–595. https://doi.org/10.1038/nclimate1495 Vecchi, G. A., &Soden, B. J. (2007). Global warming and the weakening of the tropical circulation. Journal of Climate, 20(17), 4316–4340. https://doi.org/10.1175/JCLI4258.1 Voigt, A., Pincus, R., Stevens, B., Bony, S., Boucher, O., Bellouin, N., Lewinschal, A., Medeiros, B., Wang, Z., &Zhang, H. (2017). Fast and slow shifts of the zonal-mean intertropical convergence zone in response to an idealized anthropogenic aerosol. Journal of Advances in Modeling Earth Systems, 9, 870–892. https://doi.org/10.1002/ 2016MS000902 Wang, B., Jin, C., &Liu, J. (2020). Understanding Future Change of Global Monsoons Projected by CMIP6 Models. Journal of Climate, 33(15), 6471–6489. https://doi.org/10.1175/JCLI-D-19-0993.1 Wara, M. W., Ravelo, A. C., &Delaney, M. L. (2005). Permanent El Niño-like conditions during the Pliocene warm period. Science, 309(5735), 758–761. https://doi.org/10.1126/science.1112596 Watanabe, M., Dufresne, J. L., Kosaka, Y., Mauritsen, T., &Tatebe, H. (2021). Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nature Climate Change, 11(1), 33–37. https://doi.org/10.1038/s41558-020-00933-3 Watanabe, M., Kang, S. M., Collins, M., Hwang, Y. T., McGregor, S., &Stuecker, M. F. (2024). Possible shift in controls of the tropical Pacific surface warming pattern. Nature, 630(8016), 315–324. https://doi.org/10.1038/s41586-024-07452-7 White, R. H., McFarlane, A. A., Frierson, D. M. W., Kang, S. M., Shin, Y., &Friedman, M. (2018). Tropical Precipitation and Cross-Equatorial Heat Transport in Response to Localized Heating: Basin and Hemisphere Dependence. Geophysical Research Letters, 45(21), 11,949-11,958. https://doi.org/10.1029/2018GL078781 Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C., &Battisti, D. S. (2022). Systematic Climate Model Biases in the Large-Scale Patterns of Recent Sea-Surface Temperature and Sea-Level Pressure Change. Geophysical Research Letters, 49(17). https://doi.org/10.1029/2022GL100011 Xiang, B., Zhao, M., Ming, Y., Yu, W., &Kang, S. M. (2018). Contrasting impacts of radiative forcing in the Southern Ocean versus southern tropics on ITCZ position and energy transport in one GFDL climate model. Journal of Climate, 31(14), 5609–5628. https://doi.org/10.1175/JCLI-D-17-0566.1 Xie, S. P., Deser, C., Vecchi, G. A., Collins, M., Delworth, T. L., Hall, A., Hawkins, E., Johnson, N. C., Cassou, C., Giannini, A., &Watanabe, M. (2015). Towards predictive understanding of regional climate change. Nature Climate Change, 5(10), 921–930. https://doi.org/10.1038/nclimate2689 Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., &Wittenberg, A. T. (2010). Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23(4), 966–986. https://doi.org/10.1175/2009JCLI3329.1 Zhang, J., Ma, J., Che, J., Zhou, Z., &Gao, G. (2020). Surface warming patterns dominate the uncertainty in global water vapor plus lapse rate feedback. Acta Oceanologica Sinica, 39(3), 81–89. https://doi.org/10.1007/s13131-019-1531-2 Zhao, S., &Suzuki, K. (2019). Differing impacts of black carbon and sulfate aerosols on global precipitation and the ITCZ location via atmosphere and ocean energy perturbations. Journal of Climate, 32(17), 5567–5582. https://doi.org/10.1175/JCLI-D-18-0616.1 Zhou, T., Yu, R., Li, H., &Wang, B. (2008). Ocean forcing to changes in global monsoon precipitation over the recent half-century. Journal of Climate, 21(15), 3833–3852. https://doi.org/10.1175/2008JCLI2067.1 Zhou, W., Leung, L. R., &Lu, J. (2023). The Role of Interactive Soil Moisture in Land Drying Under Anthropogenic Warming. Geophysical Research Letters, 50(19). https://doi.org/10.1029/2023GL105308 Zhu, Y. (2012). Variations of the summer Somali and Australia cross-equatorial flows and the implications for the Asian summer monsoon. Advances in Atmospheric Sciences, 29(3), 509–518. https://doi.org/10.1007/s00376-011-1120-6 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98568 | - |
| dc.description.abstract | 在全球暖化下,大氣環流的變化是未來氣候預測中主要的不確定來源之一。過去的研究成功利用能量限制來解釋熱帶環流的整體減弱以及間熱帶輻合區 (ITCZ) 的移動。在本篇論文中,我進一步探討了全球暖化下大氣能量收支與熱帶環流在區域尺度上的關聯性。根據CMIP6氣候模式的abrubt-4xCO2 模擬 (將二氧化碳的濃度突然提高至四倍),本篇論文提出兩項關鍵發現。第一項發現是,大氣能量收支的改變在陸地與海洋之間的演化具有明顯差異,這種海陸能量差異解釋了模式平均的沃克環流 (Walker Circulation) 變化在初始暖化階段與準平衡階段之間的反轉。第二項發現指出,北半球夏季時,歐亞大陸中高緯度的雲量減少 (導致太陽輻射增加),以及南大洋的熱吸收,促使熱帶的深對流向北移動,進而增強南亞季風降水。
第一項關鍵發現是基於我對全球暖化下大氣能量源 (energy source) 以及能量匯 (energy sink) 變化的診斷。在最初的二十年間,能量改變的空間分布主要和海陸差異有關,大氣的能量源主要集中在陸地上。隨著時間推移,熱帶東太平洋區域的能量源逐漸發展,而陸地上的能量源則逐漸減弱。沃克環流的變化可以通過以上能量源的相對強度解釋:當陸地的能量源較強時,沃克環流傾向於增強;而當東太平洋的能量來源較強時,沃克環流則趨於減弱。從能量角度來看,初期沃克環流的增強有助於將過多的能量從陸地重新分配到海洋;相對的,在長時間尺度下,赤道東太平洋區域的逐漸升溫增強了該處的能量源,驅動沃克環流的減弱。 第二項關鍵發現則是基於對季節尺度下大氣能量收支改變的進一步分析。在暖化下,大氣能量收支的改變具有顯著的季節性。在北半球夏季期間,南亞地區的南北向能量梯度顯著增強,驅動了異常的向南能量傳送;此能量傳送的改變則使深對流向北移動至南亞地區。進一步分析顯示,南亞區域能量梯度的增強主要由兩個因素驅動:歐亞中高緯度地區的雲回饋 (形成異常的能量源),以及南大洋的海洋吸熱(形成異常的能量匯)。進一步的氣候模式實驗驗證了這一假說:在抑制這兩個區域過程後,南亞季風降水的增加被削弱了68%。大氣水氣收支的診斷顯示,深對流的北移在增強南亞季風降水方面扮演了關鍵角色;這與傳統的解釋 (即南亞季風降水的增加主要是由於大氣濕度上升) 有所不同。 本論文的研究結果顯示,從能量觀點出發,有助於理解熱帶區域環流的變化,並指出大氣能量收支的變化可用來解釋全球暖化下區域環流的轉變。 | zh_TW |
| dc.description.abstract | Changes in atmospheric circulation under global warming are major sources of uncertainty in future climate projections. Previous studies have successfully accounted for the overall weakening of tropical circulation and the shift of the zonal-mean ITCZ by applying energetic constraints. In this dissertation, I take a further step by investigating the connection between energy and tropical circulation on regional scales under global warming. The dissertation presents two key findings. First, a robust land–sea contrast in the evolution of the anomalous atmospheric energy budget, as revealed by CMIP6 abrupt-4xCO₂ simulations, accounts for the reversal of model-mean Walker circulation changes between the initial warming stage and the quasi-equilibrium stage. Second, the combination of reduced solar reflection due to decreased cloud cover and enhanced heat uptake over the Southern Ocean, particularly during boreal summer, leads to a robust northward shift of the deep convections that enhances the South Asian monsoon rainfall.
The first key finding is built on my analysis and interpretation of the spatial distribution of anomalous energy sources and sinks evolution under global warming. In the first two decades, a “land-sea contrasting” pattern emerges, with anomalous energy sources mainly over land. Over time, an energy source develops and intensifies over the tropical eastern Pacific, while the energy source over lands diminishes. The response of Walker circulation depends on the relative strength of these energy sources: it tends to strengthen when the Afro-Eurasian energy source dominates and weakens when the eastern Pacific energy source prevails. From the energetic perspective, the Walker circulation strengthening acts to redistribute the excessive energy from land to ocean and the ocean processes contribute to the inter-model spread. On the other hand, the long-term weakening of Walker circulation is driven by the gradually developing energy source in the equatorial eastern Pacific as the region warms by the slowdown of subtropical cell and warm water ventilation. The second key finding arise as the analysis goes beyond annual-mean changes. There are significant seasonal variations in the atmospheric energy budget. The meridional energy gradient over the South Asia is found to be largely enhanced during the boreal summer, driving anomalous southward energy transport which demands the northward shift of deep convections toward the South Asia. Further analysis shows that the enhanced meridional energy gradient over the South Asia during boreal summer is driven by two key factors: a positive cloud feedback over extra-tropical Eurasia (creating an energy source) and ocean heat uptake over the Southern Ocean (creating an energy sink). Mechanism-denial experiments confirm this hypothesis: suppressing these two regional processes reduces the excess SAM rainfall by 68%. This shifting of deep convections is found to play a critical role in enhancing the South Asian monsoon rainfall; this mechanism contrasts with the conventional explanation that links increased South Asian monsoon rainfall primarily to higher atmospheric moisture. The results in this dissertation demonstrate the implications of energetic perspective on the changes in tropical regional circulations, highlighting that the responses of atmospheric energy budget can be used to understand and constrain the changes in regional circulation under global warming. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:54:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:54:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
中文摘要 ii Abstract iv 目 次 vii 圖 次 x Chapter 1. Introduction 1 Chapter 2. Data and Methodology 6 2.1 CMIP6 data 6 2.2 Calculation of energy flux potential and regional EFE 6 2.3 Implied energy transport in 2D map 7 2.4 Decomposing the shift and weakening components of circulation changes 9 2.5 Moisture budget 10 2.6 CESM1 simulations 12 a. Regional cloud-locking method 12 b. Southern Ocean pacemaker simulations 13 Chapter 3. The Changes in Energy Distribution under Global Warming 16 3.1 The initial responses of the anomalous NEI over tropical lands 18 3.2 The evolution of the anomalous NEI over tropical lands 19 3.3 The initial responses of the anomalous NEI over tropical ocean 20 3.4 The evolution of the anomalous NEI over tropical ocean 21 3.5 The distribution of energy shaped by the distinct energetic natures between land and ocean 24 Chapter 4. The Responses of Walker Circulation under Global Warming Connected to the Changes in Energy Distribution 27 4.1 Responses of Walker circulation connected to the energy sources of the atmosphere 28 4.2 The drivers of the anomalous Walker circulations from an energetic perspective 30 Chapter 5. Robust Increase in South Asian Monsoon Rainfall Under Global Warming Driven by Southern Ocean Heat Uptake and Eurasia Cloud Changes 35 5.1 Introduction 36 5.2 The vital role of the northward circulation shift in driving SAM rainfall changes: insights from a revised moisture budget 40 5.3 Attribution of the shift of SAM circulation 43 5.4 Partially-coupled experiments with disabled cloud feedback or ocean heat uptake 47 5.5 Discussion 49 Chapter 6. Summary and Discussion 53 Reference 55 Figures 77 Supplementary 93 | - |
| dc.language.iso | en | - |
| dc.subject | 全球暖化 | zh_TW |
| dc.subject | 大氣能量收支 | zh_TW |
| dc.subject | 沃克環流 | zh_TW |
| dc.subject | 南亞季風 | zh_TW |
| dc.subject | 海陸差異 | zh_TW |
| dc.subject | 雲回饋 | zh_TW |
| dc.subject | 南大洋熱吸收 | zh_TW |
| dc.subject | Energy budget | en |
| dc.subject | Southern Ocean heat uptake | en |
| dc.subject | Cloud feedback | en |
| dc.subject | Land-sea contrast | en |
| dc.subject | South Asian monsoon | en |
| dc.subject | Walker circulation | en |
| dc.subject | Global warming | en |
| dc.title | 全球暖化下熱帶區域環流改變之能量限制 | zh_TW |
| dc.title | Energetic Constraints on Tropical Regional Circulations under Global Warming | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 許晃雄;吳健銘;陳維婷;曾于恒 | zh_TW |
| dc.contributor.oralexamcommittee | Huang-Hsiung Hsu;Chien-Ming Wu;Wei-Ting Chen;Yu-Heng Tseng | en |
| dc.subject.keyword | 全球暖化,大氣能量收支,沃克環流,南亞季風,海陸差異,雲回饋,南大洋熱吸收, | zh_TW |
| dc.subject.keyword | Global warming,Energy budget,Walker circulation,South Asian monsoon,Land-sea contrast,Cloud feedback,Southern Ocean heat uptake, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202503314 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-10 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 19.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
