請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98566完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭彥甫 | zh_TW |
| dc.contributor.advisor | Yan-Fu Kuo | en |
| dc.contributor.author | 楊佩錡 | zh_TW |
| dc.contributor.author | Pei-Chi Yang | en |
| dc.date.accessioned | 2025-08-18T00:54:12Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Afifi, M., & Abuolaim, A. (2021). Semi-supervised raw-to-raw mapping. arXiv preprint arXiv:2106.13883. https://arxiv.org/abs/2106.13883
Bellusci, G., Braglia, R., Di Marco, G., Redi, E., Canini, A., & Gismondi, A. (2023). Assessing molecular diversity among 87 species of the Quercus L. genus by RAPD markers. Genetic Resources and Crop Evolution, 70, 1–12. https://doi.org/10.1007/s10722-023-01595-8 Bogun, A. C., Paredes-Villanueva, K., Mascarello, M., & Magel, E. A. (2024). Development of a DNA macroarray for the molecular biological identification of trade-relevant tropical CITES timber species and their look-alikes. Holzforschung, 78, 471–486. Chalapathy, R., Menon, A. K., & Chawla, S. (2019). Anomaly detection using one-class neural networks. arXiv preprint arXiv:1802.06360v2. https://arxiv.org/abs/1802.06360 Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2021). An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. https://arxiv.org/abs/2010.11929 Ergun, H. (2024). Wood identification based on macroscopic images using deep and transfer learning approaches. PeerJ, 12, e17021. https://doi.org/10.7717/peerj.17021 Food and Agriculture Organization of the United Nations. (2023, November 2). Global Forest Products Facts and Figures 2023 shows fall in global trade in wood and paper products. https://www.fao.org/newsroom/detail/global-forest-products-facts-and-figures-2023-shows-fall-in-global-trade-in-wood-and-paper-products/en He, T., Lu, Y., Jiao, L., Zhang, Y., Jiang, X., & Yin, Y. (2020). Developing deep learning models to automate rosewood tree species identification for CITES designation and implementation. Holzforschung, 74. https://doi.org/10.1515/hf-2020-0006 Hendrycks, D., & Gimpel, K. (2017). A baseline for detecting misclassified and out-of-distribution examples in neural networks. International Conference on Learning Representations (ICLR). https://arxiv.org/abs/1610.02136 Hong, G., Luo, M. R., & Rhodes, P. A. (2001). A study of digital camera colorimetric characterization based on polynomial modeling. Color Research & Application, 26(1), 76–84. https://doi.org/10.1002/1520-6378(200102)26:1<76::AID-COL8>3.0.CO;2-3 Herrera-Poyatos, D., Martín-Pascual, M. Á., Sáez, A., Martín, A., & Molina-Cabello, M. Á. (2024). Deep learning methodology for the identification of wood species using high-resolution macroscopic images. In 2024 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE. https://doi.org/10.1109/IJCNN60899.2024.10650590 Hwang, S. W., & Sugiyama, J. (2021). Computer vision-based wood identification and its expansion and contribution potentials in wood science: A review. Plant Methods, 17, 47. https://doi.org/10.1186/s13007-021-00746-1 Jiang, J., Liu, D., Gu, J., & Süsstrunk, S. (2013). What is the space of spectral sensitivity functions for digital color cameras? In Proceedings of the IEEE Workshop on Applications of Computer Vision (WACV). https://doi.org/10.1109/WACV.2013.6475036 Jiao, L., Lu, Y., He, T., Li, J., & Yin, Y. (2019). A strategy for developing high-resolution DNA barcodes for species discrimination of wood specimens using the complete chloroplast genome of three Pterocarpus species. Planta, 250(1), 95–104. https://doi.org/10.1007/s00425-019-03150-1 Lens, F., Liang, C., Guo, Y., Tang, X., Jahanbanifard, M., Silva, F., Ceccantini, G., & Verbeek, F. (2020). Computer-assisted timber identification based on features extracted from microscopic wood sections. IAWA Journal, 41, 1–21. https://doi.org/10.1163/22941932-bja10029 Ng, C. H., Ng, K. K. S., Lee, S. L., Zakaria, N.-F., Lee, C. T., & Tnah, L. H. (2022). DNA databases of an important tropical timber tree species Shorea leprosula (Dipterocarpaceae) for forensic timber identification. Scientific Reports, 12, Article 9546. https://doi.org/10.1038/s41598-022-13697-x NVIDIA Corporation. (2024). Triton Inference Server [Software]. https://github.com/triton-inference-server/server ONNX. (2024). ONNX: Open Neural Network Exchange [Software]. https://github.com/onnx/onnx Sakurada, M., & Yairi, T. (2014). Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (pp. 4–11). Association for Computing Machinery. https://doi.org/10.1145/2689746.2689747 Vareldzhan, G., Yurkov, K., & Ushenin, K. (2021). Anomaly detection in image datasets using convolutional neural networks, center loss, and Mahalanobis distance. In 2021 IEEE Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT) (pp. 190–194). IEEE. https://doi.org/10.1109/USBEREIT51243.2021.9455679 Wheeler, E. A., & Baas, P. (1998). Wood identification – A review. IAWA Journal, 19(3), 241–264. Zhao, Z., Yang, X., Ge, Z., Guo, H., & Zhou, Y. (2021). Wood microscopic image identification method based on convolution neural network. BioResources, 16, 4986–4999. https://doi.org/10.15376/biores.16.3.4986-4999 Zielinski, K. M., Scabini, L., Ribas, L. C., da Silva, N. R., Beeckman, H., Verwaeren, J., Bruno, O. M., & De Baets, B. (2025). Advanced wood species identification based on multiple anatomical sections and using deep feature transfer and fusion. Computers and Electronics in Agriculture, 212, 108524. https://doi.org/10.1016/j.compag.2024.108524 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98566 | - |
| dc.description.abstract | 臺灣擁有豐富的森林資源,其中木材是最具經濟價值且廣泛使用的森林產物。不同木材物種在價格與應用上存在顯著差異,因此準確有效率的辨別木材物種對於有效的木材資源利用至關重要。傳統木材辨識方法主要包括顯微分析與宏觀觀察。前者仰賴專家進行組織切片染色並於顯微鏡下進行觀察,儘管辨識準確率高仍需耗費大量時間進行樣本製備,難以應用於現場即時辨識;後者依賴人員對氣味、質地與色澤等感官特徵進行判斷,此方法高度仰賴人員經驗,主觀性高且缺乏一致性。相較之下,基於影像辨識的方法提供一種高效率且低成本的替代方案。近期,部分研究開始嘗試以智慧型手機拍攝之影像搭配深度學習技術進行木材辨識;然而,此類方法仍面臨跨裝置色彩差異及異常影像(如非目標物種及瑕疵影像)導致的誤判問題。為解決上述問題,本研究針對臺灣常見的41種木材,提出一套結合智慧型手機影像與深度學習技術之自動化木材辨識系統。研究共蒐集134,370張掃描影像用於模型訓練與初步測試,並另外蒐集15,743張手機影像用於模型微調及測試。本研究所提出的辨識系統包含三個核心階段:(i)色彩校正模組,有效降低不同拍攝裝置之色彩差異;(ii)異常影像檢測模型;用以排除非目標物種與瑕疵影像;(iii)基於視覺轉換器(Vision Transformer)的木材辨識模型。在色彩校正方面,不同裝置間的平均ΔE*色差經校正後由13.59降至3.02,色差降低幅度達77.2%;異常影像檢測模型準確率達 98.31%,而物種辨識模型於智慧型手機影像上的準確率達 94.71%。此外,整個系統透過雲端平台部署,並以 API 連結 LINE 聊天機器人介面,提供即時現地的木材辨識服務。本研究所開發之系統突破傳統木材辨識僅能在實驗室內進行之限制,並進一步降低木材辨識所需之專家人力與時間。 | zh_TW |
| dc.description.abstract | Taiwan possesses abundant forest resources, among which wood is the most economically valuable and widely utilized forest product. Given the substantial variation in price and application across wood species, accurate and efficient species identification is essential for effective resource utilization. Conventional wood identification methods primarily include microscopic analysis and macroscopic observation. Microscopic analysis relies on experts to prepare histologically stained sections and examine anatomical structures under a microscope. While this approach yields high accuracy, it is time-consuming due to the complexity of sample preparation, making it unsuitable for real-time, on-site identification. In contrast, macroscopic observation depends on field personnel assessing sensory characteristics such as odor, texture, and color. This method is highly subjective, relies heavily on individual experience, and often leads to inconsistent results. In contrast, image-based identification approaches offer an efficient and objective alternative. Recent studies have explored smartphone-based wood identification using deep learning; however, these methods still encounter challenges arising from cross-device color variation and the presence of anomalous images (e.g., non-target species or defective samples). To address these challenges, this study proposes an automated wood identification system specifically developed for 41 wood species commonly found in Taiwan, comprising 27 hardwoods and 14 softwoods. A total of 134,370 scanner images were collected for model training and testing, and 15,743 smartphone images used for model fine-tuning and testing. The proposed pipeline comprises three core components: (i) a color calibration module to effectively mitigate cross-device color discrepancies, (ii) an out-of-distribution (OOD) detection model to exclude non-target or defective images, and (iii) a wood identification model based on Vision Transformer architecture. In terms of results, after color calibration, the mean ΔE* color difference between devices decreased from 13.59 to 3.02. The OOD detector achieved 98.31% accuracy, and the wood identification model achieved 94.71% accuracy on smartphone images. The complete system is deployed on a cloud platform and integrated with a LINE chatbot via API, offering real-time, and user-friendly, identification services. This approach further reduces the reliance on expert labor and significantly shortens the time required for accurate identification. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:54:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:54:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i
中文摘要 ii ABSTRACT iii TABLE OF CONTENTS v LIST OF FIGURES vii LIST OF TABLES x CHAPTER 1. INTRODUCTION 1 1.1 Background 1 1.2 Objectives 2 1.3 Organization 2 CHAPTER 2. LITERATURE REVIEW 4 2.1 Molecular biology techniques for wood identification 4 2.2 Deep-learning-based approaches for wood identification 4 2.3 Out-of-distribution detection approaches 7 2.4 Color calibration approaches 7 CHAPTER 3. MATERIALS AND METHODS 9 3.1 System overview 9 3.2 Wood sample preparation 9 3.3 Definition and rationale of out-of-distribution (OOD) samples 11 3.4 Scanner image preparation 12 3.5 Smartphone image preparation 13 3.6 Wood identification model 14 3.7 Out-of-distribution (OOD) detection model 15 3.8 Color calibration and performance evaluation of the calibration model 16 3.9 Chatbot controller and model deployment 18 CHAPTER 4. RESULTS AND DISCUSSION 19 4.1 Performance of the wood identification model 19 4.2 Performance of the OOD detection model 21 4.3 Performance of the color calibration model 22 4.4 Smartphone chatbot interface 24 4.5 Contribution of color information 25 4.6 Contribution of fine-tuning 26 4.7 Limitation of the identification model 27 CHAPTER 5. CONCLUSIONS 29 REFERENCES 30 Appendix 1. List of Non-Target Wood Species 34 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 木材辨識 | zh_TW |
| dc.subject | 聊天機器人 | zh_TW |
| dc.subject | 異常影像檢測 | zh_TW |
| dc.subject | 色彩校正 | zh_TW |
| dc.subject | 手機影像 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | deep learning | en |
| dc.subject | color calibration | en |
| dc.subject | smartphone-based images | en |
| dc.subject | out-of-distribution detection | en |
| dc.subject | wood identification | en |
| dc.subject | chatbot | en |
| dc.title | 利用手機影像與深度神經網路辨識木材 | zh_TW |
| dc.title | Wood Identification Using Smartphone Images and Deep Neural Network | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 卓志隆;楊德新;朱玟霖;李文宗 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Lung Cho;Te-Hsin Yang;Wen-Lin Chu;Wen-Tzong Lee | en |
| dc.subject.keyword | 木材辨識,深度學習,手機影像,色彩校正,異常影像檢測,聊天機器人, | zh_TW |
| dc.subject.keyword | wood identification,deep learning,smartphone-based images,color calibration,out-of-distribution detection,chatbot, | en |
| dc.relation.page | 34 | - |
| dc.identifier.doi | 10.6342/NTU202503605 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2029-09-19 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2029-09-19 | 3.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
