請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98557完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭智馨 | zh_TW |
| dc.contributor.advisor | Chih-Hsin Cheng | en |
| dc.contributor.author | 鄭勝榮 | zh_TW |
| dc.contributor.author | Sheng-Jung Cheng | en |
| dc.date.accessioned | 2025-08-18T00:52:08Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | 中央氣象署 (2023) 觀測資料查詢系統,CWB Observation Data Inquire System。
平溪鄉志編輯委員會 (1997) 平溪鄉志。臺北縣。 向萬勝、黃敏、李學垣 (2004) 土壤磷素的化學組分及其植物有效性。植物營養與肥料學報 10(6):663-670。 呂惠靖 (2005) 以DCB法萃取土壤中游離氧化鐵之探討。國立臺灣大學農業化學研究所碩士論文。 林苡涵 (2017) 臺灣農地廢耕造林對土壤有機碳儲存量及形態劃分的影響。國立臺灣大學森林環境暨資源學研究所碩士論文。 林信輝、巫建達、呂金誠 (1992) 石灰石礦區捨石場植生特性之研究。中華水土保持學報 23(2):57-72。 林哲郁 (2016)。台灣北部烘爐山森林土壤之特性化育與分類。國立臺灣大學農業化學研究所碩士論文。 周耀裕 (2007) 煤礦產業與地方社會--以台北土城地區為例(1897~1989)。國立中央大學歷史研究所碩士在職專班論文。 洪偉豪 (2012) 平溪地區的聚落發展與資源開發(1820-1969)。國立臺灣師範大學地理學研究所碩士論文。 徐仲禹 (2009) 土壤中鐵錳結核對鉻的氧化還原反應之影響。國立臺灣大學農業化學研究所碩士論文。 陳威霖 (2023) 臺灣煤礦工人勞動與歷史文化初探。勞動及職業安全衛生研究季刊 31(3):110-132。 張婷雅 (2020) 不同土地利用之土壤磷含量與型態。國立臺灣大學森林環境暨資源學研究所碩士論文。 陳震菖 (2016) 鄰近火成岩與沉積岩母質化育土壤之性質與碳儲存量差異。國立臺灣大學森林環境暨資源學研究所碩士論文。 黃鑑水 (1988) 《五萬分之一 臺灣地質圖說明書 圖幅第四號 臺北》,臺北:經濟部中央地質調查所。 黃鑑水、胡賢能、陳文政 (1990) 臺灣北部南港-坪林間之地質。經濟部中央地質調查所彙刊 6:1-11。 許曉琪 (2003) 煤礦棄土琉球松造林地中游離固氮潛能與土壤溶液之季節變動。國立中興大學森林學研究所碩士論文。 楊蕙綺 (2000) 琉球松菌根對煤礦棄土地土壤化學與微生物性質之影響。國立中興大學森林學研究所碩士論文。 魏子穎 (2024) 以物理分餾與穩定同位素分析檢視臺灣平地造林之土壤有機碳動態。國立臺灣大學森林環境暨資源學研究所碩士論文。 簡士濠、邱志郁、陳財輝 (2009)。台灣中部低海拔森林土壤之性質與化育作用。台灣林業科學 24(1):27-40。 顏江河 (1996) 彩色豆馬勃硫球松菌根在煤礦棄土對土壤溶液。國立臺灣大學森林學研究所博士論文。 顏江河 (2008) 菌根與煤礦棄土地的復舊造林。林業研究專訊 15(1):14-17。 Abdelrhman, A. A., Gao, L., Li, S., Lu, J., Song, X., Zhang, M., Zheng, F. & Wu, H. (2021) Long-Term Application of Organic Wastes Improves Soil Carbon and Structural Properties in Dryland Affected by Coal Mining Activity. Sustainability, 13(10), 5686. Ahirwal, J. & Maiti, S. K. (2016). Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India. Catena, 140, 155-163. Ahirwal, J., Maiti, S. K. & Reddy, M. S. (2017) Development of carbon, nitrogen and phosphate stocks of reclaimed coal mine soil within 8 years after forestation with Prosopis juliflora (Sw.) Dc. Catena, 156, 42-50. Amichev, B. Y., Burger, J. A. & Rodrigue, J. A. (2008). Carbon sequestration by forests and soils on mined land in the Midwestern and Appalachian coalfields of the U.S. Forest Ecology and Management, 256(11), 1949-1959 Barral, M. T., Arias, M. & Guérif, J. (1998). Effects of iron and organic matter on the porosity and structural stability of soil aggregates. Soil & Tillage Research, 46(3-4), 261-272. Barrow, N. J., Debnath, A. & Sen, A. (2023). Investigating the dissolution of soil Phosphate. Plant and Soil, 490, 591-599. Barrow, N. J., Sen, A., Roy, N. & Debnath, A. (2021). The soil phosphate fractionation fallacy. Plant and Soil, 459, 1-11. Don, A., Schumacher, J. & Freibauer, A. (2011) Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology, 17(4), 1658-1670. Doorn, M. v., Rotterdam, D. v., Ros, G., Koopmans, G. F., Smolders, E. & Vries, W. d. (2024). The phosphorus saturation degree as a universal agronomic and environmental soil P test. Critical Reviews in Environmental Science and Technology, 54(5), 385-404. Feng, Y., Wang, J., Bai, Z. & Reading, L. (2019). Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Science Reviews, 191, 12-25. Frouz, J., Dvorščík, P., Vávrová, A., Doušová, O., Kadochová, Š. & Matějíček, L. (2015). Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites. Ecological Engineering, 84, 233-239. Frouz, J., Kalčík, J. & Velichová, V. (2011). Factors causing spatial heterogeneity in soil properties, plant cover, and soil fauna in a non-reclaimed post-mining site. Ecological Engineering, 37(11), 1910-1913. Frouz, J., Livečková, M., Albrechtová, J., Chroňáková, A., Cajthaml, T., Pižl, V., Háněl, L., Starý, J., Baldrian, P., Lhotáková, Z., Šimáčková, H.& Cepáková, Š. (2013). Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. Forest Ecology and Management, 309, 87-95. Frouz, J., Prach, K., Pižl, V., Háněl, L., Starý, J., Tajovský, K., Materna, J., Balík, V., Kalčík, J. & Řehounková, K. (2008). Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology, 44(1), 109-121. Gorsira, B. & Risenhoover, K. L. (1994). An evaluation of woodland reclamation on strip-mined lands in east Texas. Environmental Management, 18, 787-793. Gunathunga, S. U., Gagen, E. J., Evans, P. N., Erskine, P. D. & Southam, G. (2023). Anthropedogenesis in coal mine overburden; the need for a comprehensive, fundamental biogeochemical approach. Science of the Total Environment, 892, 164515. Kompała-Bąba, A., Bierza, W., Sierka, E., Błońska, A., Besenyei, L. & Woźniak, G. (2021). The role of plants and soil properties in the enzyme activities of substrates on hard coal mine spoil heaps. Scientific Reports, 11 ,5155. Kompała-Bąba, A., Bierza, W., Błońska, A., Sierka, E., Magurno, F., Chmura, D., Besenyei, L., Radosz, Ł. & Woźniak, G. (2019). Vegetation diversity on coal mine spoil heaps – how important is the texture of the soil substrate? Biologia, 74, 419-436. Kompała-Bąba, A., Sierka, E., Dyderski, M. K., Bierza, W., Magurno, F., Besenyei, L., Błońska, A., Ryś, K., Jagodziński, A. M. & Woźniak, G. (2020). Do the dominant plant species impact the substrate and vegetation composition of post-coal mining spoil heaps? Ecological Engineering, 143, 105685. Lavallee, J. M., Soong, J. L., & Cotrufo, M. F. (2020). Conceptualizing soil organic matter into particulate andmineral‐associated forms to address global change in the21st century. Global Change Biology, 26(1), 261-273. Liu, X., Bai, Z., Zhou, W., Cao, Y. & Zhang, G. (2017) Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China. Ecological Engineering, 98, 228-239. Markowicz, A., Woźniak, G., Borymski, S., Piotrowska-Seget, Z. & Chmura, D. (2015). Links in the functional diversity between soil microorganisms and plant communities during natural succession in coal mine spoil heaps. Ecological Research, 30, 1005-1014. Martínez, C. M., Marcos, M. L. F. & Rodríguez, E. A. (1996). Factors influencing phosphorus adsorption in mine soils in Galicia, Spain. Science of the Total Environment, 180(2), 137-145. Martins, W. B. R., Lima, M. D. R., Junior, U. de O. B., Villas-Boas Amorim, L. S., Oliveira, F. de A. & Schwartz, G. (2020). Ecological methods and indicators for recovering and monitoring ecosystems after mining: A global literature review. Ecological Engineering, 145, 105707. Miguel, P., Stumpf, L., Pinto, L. F. S., Pauletto, E. A., Rodrigues, M. F., Barboza, L. S., Leidemer, J. D., Duarte, T. B., Pinto, M. A. B., De Garcia Fernandez, M. B., Islabão, L. O., da Silveira, L. M. & Rocha, J.V. P. (2023). Physical restoration of a minesoil after 10.6 years of revegetation. Soil & Tillage Research, 227, 105599. Mudrák, O., Doležal, J. & Frouz, J. (2016). Initial species composition predicts the progress in the spontaneous succession on post-mining sites. Ecological Engineering, 95, 665-670. Mukhopadhyay, S., Masto, R. E., Yadav, A., George, J., Ram, L. C. & Shukla, S. P. (2016). Soil quality index for evaluation of reclaimed coal mine spoil. Science of the Total Environment, 542, 540-550. Nishigaki, T., Sugihara, S., Kobayashi, K., Hashimoto, Y., Kilasara, M., Tanaka, H., Watanabe, T. & Funakawa, S. (2018). Fractionation of phosphorus in soils with different geological and soil physicochemical properties in southern Tanzania. Soil Science and Plant Nutrition, 64(3), 291-299. Rahmonov, O., Czajka, A., Nádudvari, Á., Fajer, M., Spórna, T. & Szypuła, B. (2022). Soil and Vegetation Development on Coal-Waste Dump in Southern Poland. International Journal of Environmental Research and Public Health, 19(15), 9167. Rahmonov, O., Krzysztofik, R., Środek, D. & Smolarek-Lach, J. (2020). Vegetation- and Environmental Changes on Non-Reclaimed Spoil Heaps in Southern Poland. Biology, 9(7), 164. Rumpel, C., Knicker, H., Kögel-Knabner, I., Skjemstad, J. O. & Hüttl, R. F. (1998). Types and chemical composition of organic matter in reforested lignite-rich mine soils. Geoderma, 86(1-2), 123-142. Sena, K. L., Yeager, K. M., Barton, C. D., Lhotka, J. M., Bond, W. E. & Schindler, K. J. (2021). Development of Mine Soils in a Chronosequence of Forestry-Reclaimed Sites in Eastern Kentucky. Minerals, 11, 422. Soremi, A. O., Adetunji, M. T., Azeez, J. O., Adejuyigbe, C. O. & Bodunde, J. G. (2017). Speciation and dynamics of phosphorus in some organically amended soils of southwestern Nigeria. Chemical Speciation & Bioavailability, 29(1), 42-53. Šourková, M., Frouz, J. & Šantrùčková, H. (2005). Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma, 124(1-2), 203-214. Spasić, M., Drábek, O., Borůvka, L. & Tejnecký, V. (2023). Trends of Global Scientific Research on Reclaimed Coal Mine Sites between 2015 and 2020. Applied Sciences, 13(14), 8412. Stumpf, L., Pauletto, E. A. & Pinto, L. F. S. (2016). Soil aggregation and root growth of perennial grasses in a constructed clay minesoil. Soil & Tillage Research, 161, 71-78. Ussiri, D. A. N., Jacinthe, P. & Lal, R. (2014) Methods for determination of coal carbon in reclaimed minesoils: A review. Geoderma, 214-215, 155-167. Ussiri, D.A.N. & Lal, R. (2008) Method for Determining Coal Carbon in the Reclaimed Minesoils Contaminated with Coal. Soil Science Society of America Journal, 72, 231-237. Wang, J., Wang, H., Cao, Y., Bai, Z. & Qin, Q. (2016). Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area. Scientific Reports, 6, 22058. Wang, J., Wu, Y., Zhou, J., Bing, H. & Sun, H. (2016). Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development. Biology and Fertility of Soils, 52, 825-839. Woś, B., Nezhad, M. T. K., Mustafa, A., Pietrzykowski, M. & Frouz, J. (2023). Soil carbon storage in unreclaimed post mining sites estimated by a chronosequence approach and comparison with historical data. Catena, 220, 106664. Yu, W., Huang, W., Weintraub-Leff, S. R. & Hall, S. J. (2022). Where and why do particulate organic matter (POM) and mineral-associated organic matter (MAOM) differ among diverse soils? Soil Biology and Biochemistry, 172, 108756. Zhao, Z., Shahrour, I., Bai, Z., Fan, W., Feng, L. & Li, H. (2013). Soils development in opencast coal mine spoils reclaimed for 1–13 years in the West-Northern Loess Plateau of China. European Journal of Soil Biology, 55, 40-46. Zipper, C. E., Burger, J. A., Skousen, J. G., Angel, P. N., Barton, C. D., Davis V. & Franklin, J. A. (2011). Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines. Environmental Management, 47, 751-765. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98557 | - |
| dc.description.abstract | 煤礦曾是臺灣重要的採礦產業之一,為早期推動工業化的重要基礎。然而採礦過程,不僅破壞天然植被或改變地形而造成地表退化,其中地下採礦開採時挖掘出的石塊與棄土,因集中堆積形成小山丘狀的地形,而得捨石山之名。由於有關捨石山之土壤性質在自然演育下情況的研究較少,因此本文初步進行捨石山土壤之植生與物理化學性質調查,探討捨石山人為土壤經30餘年自然化育情況下,其土壤性質與鄰近非捨石山土壤之比較。實驗結果顯示,捨石山人為土壤剖面化育較為簡單,僅為A-C土壤層化育,並無化育B層。捨石山人為土壤含石率亦高,土壤含石率超過50 %,下層土壤含石率甚至可達80 %。然而,捨石山土壤呈現較暗顏色,其小於2 mm以下之土壤有機碳量與全氮量較鄰近次生林土壤高,土壤pH亦較次生林低,CEC同樣呈現捨石山土壤高於次生林土壤。選擇性鐵鋁萃取數據顯示,捨石山土壤具有較低Feo/Fed (無定型鐵與游離鐵比例)數值與較高Fed/Fet (游離鐵與全鐵比例)數值,就風化程度而言,鐵鋁萃取數值結果顯示捨石山土壤具備一定程度風化作用,甚至高於鄰近次生林土壤。
儘管土壤野外調查結果顯示土壤剖面仍處於化育初始階段,然而上述土壤化學性質分析結果並不符合我們的預期,我們初步推測土壤分析結果僅為參與土壤化育性質的分析結果,並未實際考慮土壤母質差異之影響,因此我們進一步分析岩塊性質。從岩塊分析的結果可得知,捨石山岩塊與非捨石山之次生林區域岩塊性質亦有明顯差異,尤其是有機碳、全氮含量、Feo/Fed及Fed/Fet數值,顯示捨石山土壤高風化指數亦受到岩石本身所影響。由於捨石山與次生林土壤岩石母質並不相同,若直接比較捨石山與鄰近非捨石山土壤性質差異,可能忽略部分土壤生成因子的影響。我們的結果證明捨石山土壤化育性質除受時間影響外,亦受到生物與岩石母質的影響,且其土壤化學性質僅能說明部分參與土壤化育的結果,無法完全反應土壤風化程度。 | zh_TW |
| dc.description.abstract | Coal mining once played a pivotal role in Taiwan’s early industrial development. However, such activities have resulted in substantial land surface degradation due to the disruption of vegetation and significant alterations to local topography. Among the anthropogenic landforms generated by coal mining, "Coal Waste Heap (Sheshishan)"—mounds or hills composed of waste rock and spoil materials excavated during subsurface mining operations, is one of the obvious landscape features. These geomorphic features, characterized by steep slopes and heterogeneous substrate composition, represent a unique form of anthropogenic geomorphology. Despite their ecological and pedological relevance, the soil formation processes and edaphic properties of coal waste heap landscapes remain understudied under natural post-mining succession.
This study intends to present a preliminary assessment of the vegetation structure and soil physicochemical properties developed within the coal waste heap approximately after three decades of natural succession. The objective is to elucidate the current state of soil development in these anthropogenic deposits and to compare their properties with adjacent secondary forest soils.Our results indicate that soils in coal waste heap exhibit incipient pedogenic development, with profiles primarily exhibiting A–C horizon and lacking an illuvial B horizon, indicative of limited pedogenetic horizon differentiation. These soils are characterized by a high coarse fragment content, with lithic fragment volume exceeding 50% in the soils, even reaching up to 80% in some subsoil horizons. Nevertheless, surface horizons exhibit darker color, higher soil organic carbon (SOC) and total nitrogen (TN) contents relative to the adjacent secondary forest soils. Soil pH is comparatively lower, while cation exchange capacity (CEC) is higher, suggesting an accumulation of organic matter and increased colloidal activity in the coal waste heap soils. Selective extraction analyses of pedogenic iron and aluminum specieation further support ongoing weathering processes. Lower Feo/Fed ratios (oxalate-extractable to dithionite-extractable Fe) and higher Fed/Fet ratios (dithionite-extractable to total Fe) observed in coal waste heap soils suggest a relative dominance of crystalline over amorphous Fe phases, implying advanced mineral transformation and a notable degree of pedogenic weathering—potentially exceeding that of the adjacent secondary forest soils. Our field observations suggest that the profile development remains in the early stages, while the chemical indices predominantly reflect the properties in the coal waste heap soils are not at the incipient development as we supposed. To further interpret the unexpected pedochemical trends, a geochemical analysis of the lithic fragments was conducted. The results reveal significant differences in geochemical composition between the rocks from coal waste heap and those from adjacent secondary forest soils, particularly in SOC, TN, Feo/Fed, and Fed/Fet values. These differences indicate that the stronger weathering indices in coal waste heap soils are likely influenced not only by time factor but also by the intrinsic properties of the parent material, which differ lithologically from those of the surrounding landscape. This study concludes that the pedogenesis of coal waste heap soils is governed by a complex interplay between biotic factors, parent material heterogeneity, and environmental conditions. The chemical properties of the soil matrix reflect only the weathered fraction of the substrate, and thus cannot fully represent the weathering status of the entire soil body. These findings underscore the need for integrated geomorphic, pedologic, and geochemical approaches when assessing anthropogenic soil landscapes undergoing natural rehabilitation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:52:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:52:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………….… I
誌謝…………………………………………………………………………….……... II 中文摘要………………………………………………………………….………….. III ABSTRACT……………………………………………………………...................... IV 目次..............................................................................................................................VII 圖次...............................................................................................................................,IX 表次................................................................................................................................ X 一、 前言….……………………………………………………………………….... 1 二、 文獻回顧….…………………………………………………………………… 3 2.1臺灣及平溪煤業歷史……………………………………………………... 3 2.2捨石山的由來…………………………………………………………...… 3 2.3國外煤礦業棄土化學性質的變化………………………………………... 3 2.4國外煤礦業棄土植生的變化……………………………………………... 4 2.5土壤選擇性萃取鐵鋁與土壤風化程度的關係………………...………… 4 三、 材料與方法……………………………………………………………………. 6 3.1樣區介紹…………………………………………………………………... 6 3.2植群調查………………………………………..……………………...… 11 3.3土壤與岩石採樣方法……………………………………………………. 11 3.4土壤總體密度(Bulk Density, BD)與土壤含石率………………………. 12 3.5土壤質地分析……………………………………………………………. 12 3.6土壤與岩石pH值…………………………………………..…………… 13 3.7土壤與岩石有機碳與全氮濃度…………………………………………. 13 3.8土壤有機碳儲存量 (Soil Organic Carbon Stock, SOC Stock)…………. 14 3.9土壤陽離子交換容量(Cation exchange capacity, CEC)、交換性陽離子測定與土壤鹽基飽和度(Base Saturation, BS)……………………………… 14 3.10土壤與岩石鐵、鋁選擇性萃取與全鐵、全鋁測定……..…………. 14 3.11經Tiessen修正的Hedley磷序列萃取法……………………..…..... 15 3.12統計分析…………………………………………………………...… 16 四、 結果……………………………………………………………………...… 17 4.1植被調查………………………………………………………………. 17 4.2土壤剖面……………………………………………………………… 17 4.3土壤基本性質…………………………………………………………. 21 4.4岩石基本性質…………………………………………………………. 23 4.5土壤與岩石鐵、鋁選擇性萃取………………………………………. 31 4.6土壤磷含量與 Hedley 序列萃取…………………………………….. 37 五、 討論……………………………………….………………………………... 40 5.1捨石山與次生林的植被差異………………………………………….. 40 5.2捨石山與次生林的土壤基本性質差異……………………………..… 40 5.3捨石山與次生林的土壤鐵、鋁……………………………………….. 41 5.4捨石山與次生林土壤的序列磷性質………………………………….. 42 5.5影響捨石山土壤化育的因子………………………………………….. 43 六、 結論……………………………………….………………………………... 45 七、 參考文獻……………………………………….………………………...… 46 八、 附錄……………………………………….………………………………... 54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 煤礦 | zh_TW |
| dc.subject | 土壤化育 | zh_TW |
| dc.subject | 礦土 | zh_TW |
| dc.subject | 捨石山 | zh_TW |
| dc.subject | 土壤性質 | zh_TW |
| dc.subject | soil properties | en |
| dc.subject | coal waste heap | en |
| dc.subject | coal mining | en |
| dc.subject | mine soil | en |
| dc.subject | pedogenesis | en |
| dc.title | 廢棄煤礦捨石山與鄰近次生林土壤之化育: 生物、母質與時間因子影響 | zh_TW |
| dc.title | Soil Developments in Coal Waste Heap and Adjacent Secondary Forest:Influenced by Biological, Parent Material and Time Factors | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳尊賢;許正一 | zh_TW |
| dc.contributor.oralexamcommittee | Zueng-Sang Chen;Zeng-Yei Hseu | en |
| dc.subject.keyword | 礦土,煤礦,捨石山,土壤性質,土壤化育, | zh_TW |
| dc.subject.keyword | mine soil,coal mining,coal waste heap,soil properties,pedogenesis, | en |
| dc.relation.page | 57 | - |
| dc.identifier.doi | 10.6342/NTU202501985 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 2.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
