請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98552完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖文正 | zh_TW |
| dc.contributor.advisor | Wen-Cheng Liao | en |
| dc.contributor.author | 林康 | zh_TW |
| dc.contributor.author | Kang Lim | en |
| dc.date.accessioned | 2025-08-18T00:50:59Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | [1]. American Association of State Highway and Transportation Officials, “LRFD Bridge Design Specifications”, 9th ed. Washington, D.C.: AASHTO, 2020.
[2]. Fib, “Fib Bulletin 34:Model Code for Service Life Design”, International Federation for Structural Concrete, Lausanne, Switzerland, 2006. [3]. Fib, “Model Code for Concrete Structure 2020”, International Federation for Structural Concrete, Lausanne, Switzerland, 2024. [4]. CEN, “EN 1992-1-1: Eurocode 2 – Design of Concrete Structures – Part 1-1: General Rules and Rules for Buildings”, European Committee for Standardization, Brussels, Belgium, 2023. [5]. JSCE, “Standard Specifications for Concrete structures:durability”, Japan Society of Civil Engineers, Tokyo, Japan, 2018. [6]. American Association of State Highway and Transportation Officials, Guide Specification for Service Life Design of Highway Bridges, 1st ed. Washington, D.C.: American Association of State Highway and Transportation Officials, 2020. [7]. B. Sangoju, R. Gopal, B. B. H. Bharatkumar, "A review on performance-based specifications toward concrete durability," Structural Concrete, vol. 22, pp. 2526–2538, 2021. [8]. H. Beushausen, R. Torrent, M. G. Alexander, "Performance-based approaches for concrete durability: State of the art and future research needs," Cement and Concrete Research, vol. 119, pp. 11–20, May 2019. [9]. S. Demis, V. G. Papadakis, "Durability design process of reinforced concrete structures - Service life estimation, problems and perspectives," Journal of Building Engineering, vol. 26, November 2019. [10]. V. M. John, M. Quattrone, P. C. R. A. Abrão, F. A. Cardoso, "Rethinking cement standards: Opportunities for a better future," Cement and Concrete Research, vol. 124, 2019. [11]. M. Alexander, H. Beushausen, "Durability, service life prediction, and modelling for reinforced concrete structures – review and critique," Cement and Concrete Research, vol. 122, pp. 17–29, August 2019. [12]. 內政部國土署,『建築物混凝土結構設計規範』,2023 [13]. 交通部,『公路橋梁設計規範,第十二章修訂版』,2015 [14]. American Concrete Institute, "Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary", Farmington Hills, MI, USA: ACI, 2019. [15]. Standards Australia, "AS 3600:2018 – Concrete Structures",Sydney, Australia: Standards Australia, 2018. [16]. CSA Group,"A23.1-09/A23.2-09: Concrete Materials and Methods of Concrete Construction / Test Methods and Standard Practices for Concrete",Ontario, Canada: CSA International, 2009. [17]. CEN, “EN 206: Concrete – Specification, Performance, Production and Conformity”, European Committee for Standardization, Brussels, Belgium, 2013. [18]. CEN, “EN 1990: Eurocode – Basis of Structural Design”, European Committee for Standardization, Brussels, Belgium, 2023. [19]. C. Moraru, A. Apostu, D. Georgescu, "Carbonation Resistance Classes of Concretes," Romanian Journal of Transport Infrastructure, vol. 10, no. 1, Article No.4, 2021. [20]. SHRP 2, “Bridges for Service Life Beyond 100 Years: Service Limit State Design”, SHRP2 Report S2-R19B-RW-1, Transportation Research Board, Washington, D.C., 2015. [21]. BSI, " BS 8500-1:2006 – Concrete – Complementary British Standard to BS EN 206-1 – Part 1: Method of specifying and guidance for the specifier", British Standards Institution, London, UK, 2006. [22]. 葉冠麟,『利用快速氯離子滲透試驗與 90天貯鹽試驗探討不同礦物摻料取代量對爐灰混凝土耐久性之影響』, 國立臺灣海洋大學材料工程研究所碩士班論文, 2024. [23]. C.-K. Chiu, F.-C. Tu, C.-Y. Fan, "Risk assessment of environmental corrosion for reinforcing steel bars embedded in concrete in Taiwan," Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. [24]. 許嘉芩,『學校建築混凝土中性化深度與齡期關係研究』, 國立臺北科技大學土木工程系土木與防災碩士班碩士學位論文, 2018. [25]. Rahimi, "Semi-probabilistic Concept to the Service Life Design and Assessment of Concrete Structures Exposed to Chlorides," Doctoral thesis, Technische Universität München, Germany, 2016. [26]. Fib, “Fib Bulletin 112:complementary guidance on concrete durability”, International Federation for Structural Concrete, Lausanne, Switzerland, 2024. [27]. Fib, “Fib Bulletin 76:Benchmarking of deemed-to-satisfy provisions in standrads”, International Federation for Structural Concrete, Lausanne, Switzerland, 2015. [28]. A. Leemann and F. Moro, "Carbonation of concrete: the role of CO₂ concentration, relative humidity and CO₂ buffer capacity," Materials and Structures, vol. 50, no. 30, 2017 [29]. Nordtest, “NT Build 492: Concrete, mortar and cement-based repair materials – Chloride migration coefficient from non-steady-state migration experiments”, Nordtest, Espoo, Finland, 1999. [30]. K. Li, Q. Li, X. Zhou, and Z. Fan, "Durability design of the Hong Kong–Zhuhai–Macau sea-link project: Principle and procedure", J. Bridge Eng, 2015 [31]. CNS (Chinese National Standard). (2008). “Code for durability design of concrete structures.” GB/T50476-2008, China Building Industry Press, Beijing, China (in Chinese). [32]. K. Li, D. Zhang, and Q. Li, "Service life design and assessment for concrete structures in HZM sea link project for 120 years," in Proc. Int. RILEM Conf. on Materials, Systems and Structures in Civil Engineering – Segment on Service Life in Materials and Structures, Lyngby, Denmark, Aug. 2016. [33]. 財團法人臺灣營建研究院,『淡江大橋鋼筋混凝土材料耐久性之探討』,中興工程顧問股份有限公司,2016 [34]. 財團法人臺灣營建研究院,『臺灣地區大氣中氯鹽與橋梁腐蝕劣化環境之研究』,中興工程顧問股份有限公司,2015 [35]. Life 365, Life-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Cost of Reinforced Concrete Exposed to Chlorides, Version 2.2, 2012 [36]. Elizabeth Rose Bales, Venkatasaikrishna Chitrapu, and Madeleine M. Flint, Ph.D., “Bridge Service Life Design”, Virginia Transportation Research Council, Charlottesville, VA, 2018. [37]. JSCE, 『混凝土標準示方書,設計篇』,2022. [38]. ACI Committee 365, “ACI 365.1R-17: Service-Life Prediction – State-of-the-Art Report”, American Concrete Institute, Farmington Hills, MI, 2017. [39]. 羅永霖,『利用快速氯離子傳輸試驗探討爐灰對混凝土耐久性之影響』, 國立臺灣海洋大學材料工程研究所碩士班論文, 2024. [40]. AASHTO, “Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration”, AASHTO T259-80 (2011), American Association of State Highway and Transportation Officials, Washington, D.C., 2011. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98552 | - |
| dc.description.abstract | 台灣混凝土設計規範目前的耐久性設計多屬於基於規範設計方法(Prescriptive Design),由於缺乏與材料實際耐久性能連結的驗證機制,導致結構物在使用年限內之耐久性及維護管理面臨挑戰。相較之下,性能設計方法(Performance-based Design)可針對結構物所處環境條件及目標使用年限,透過性能驗證程序評估實際耐久表現,因而逐漸成為國際主流。
因此,本研究以混凝土結構物為對象,回顧國外規範(如 Fib Model Code、Eurocode、JSCE、ACI 等)中以設計使用年限為目標的性能設計方法並針對台灣規範提出改進建議。本研究同時探討台灣規範未涵蓋的驗證方法,如部分係數法與全機率法等耐久性劣化模型之運作方式,並結合台灣本土環境與材料參數,進行使用年限之評估分析;進而提出一套以設計使用年限為導向的耐久性設計流程圖。 分析結果顯示,混凝土水膠比越高,使用年限越低;保護層厚度越小,使用年限亦越低。雖然台灣規範針對不同曝露環境訂有限制最大水膠比,但在相同水膠比條件下,混凝土配比的差異仍會顯著影響使用年限評估結果,顯示以水膠比作為設計控制指標仍有其局限性。因此,本研究依據此前所提出之耐久性設計流程圖中鹽害環境下的氯離子擴散係數進行補充,進一步使用多種擴散模型推估在不同條件下各配比的氯離子擴散係數容許值,彌補台灣現行規範未能提供評估依據之缺口。 本研究亦根據模型推估之氯離子擴散係數容許值,結合台灣本土實驗室之材料試驗數據,提出耐久性指數(Durability Index, DI),作為綜合評估指標。同時建立氯離子擴散係數與設計使用年限之關係圖,提供工程人員於設計初期即可根據目標使用年限選擇合適之混凝土配比與材料組成。 | zh_TW |
| dc.description.abstract | Durability design in Taiwan’s current concrete design code primarily follows the prescriptive design approach, which lacks verification mechanisms linking actual material durability performance. This results in challenges for ensuring structural durability and maintenance throughout the design service life. In contrast, performance-based design has become a global trend, as it evaluates the actual durability performance of structures based on environmental conditions and target service life through rational verification procedures.
This study focuses on concrete structures and reviews international codes (e.g., Fib Model Code, Eurocode, JSCE, ACI) that adopt performance-based design principles centered on target service life. Recommendations for revising Taiwan’s code are proposed. In addition, this study explores durability models not yet covered by local codes, such as the partial factor method and full probabilistic method, incorporating Taiwan’s local environmental and material parameters to assess design service life. A durability design flowchart based on service life is developed accordingly. Analysis results show that higher water–binder ratios lead to shorter service life, while smaller cover thicknesses similarly reduce durability. Although Taiwan’s code sets limits on the maximum water–binder ratio for different exposure conditions, variations in mix proportions under the same ratio still significantly affect service life predictions. This suggests that using the water–binder ratio as a durability control parameter is insufficient.Accordingly, this study refers to the previously proposed service life-based durability design flowchart and identifies a key missing element in Taiwan's current code: the allowable chloride diffusion coefficient under salt exposure conditions. To address this gap, this study adopts multiple durability models to calculate the maximum allowable chloride diffusion coefficients under various mix conditions A Durability Index (DI) is introduced based on model-derived allowable diffusion coefficients, and compared with local material data to validate applicability. Diagrams showing the relationship between service life and chloride diffusion coefficients are presented. These provide engineers with practical tools to select acceptable durability performance based on service life requirements, offering references for materials selection, mix proportioning, and specification control in durability-oriented design. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:50:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:50:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目次 V 圖次 IX 表次 XV 第一章、緒論 1 1.1 研究背景 1 1.2 研究目的與重要性 2 1.3 研究流程與方法 3 第二章、文獻回顧 4 2.1 設計使用年限定義與設定 4 2.2 曝露環境等級與分類 5 2.3 耐久性設計方法 6 2.4 國內耐久性規範 8 2.4.1 建築物混凝土設計規範 8 2.4.2 公路橋樑設計規範 12 2.5 國外有關設計使用年限之規範與文獻 14 2.5.1 Model Code for Service Life Design 14 2.5.1.1 設計流程 14 2.5.1.2 劣化過程與機制探討 15 2.5.1.3 耐久性驗證方法 16 2.5.1.4 可靠性指數應用 17 2.5.2 Model Code 2020 18 2.5.2.1 設計流程 19 2.5.2.2 極限狀態分類與可靠性指數應用 20 2.5.2.3 耐久性規劃 20 2.5.2.4 耐久性驗證方法 22 2.5.3 ASSHTO Guide Specification for Service Life Design of Highway Bridge (2020) 24 2.5.3.1 利用概率模型結果建立混凝土保護層建議值 25 2.5.4 Eurocode 27 2.5.4.1 基於規範設計法 27 2.5.4.2 性能設計法 29 2.6 Bridges for Service Life Beyond 100 Years: Service Limit State Design 31 第三章、量化工具討論 34 3.1 Level of approximation(LoA) 34 3.1.1 Level 1(LoA1) 34 3.1.2 Level 2(LoA2) 36 3.1.3 Level 3(LoA3)之部分係數法 37 3.1.4 Level 4(LoA4)之可靠度分析 41 第四章、案例介紹 45 4.1 港珠澳大橋 45 4.2 淡江大橋 50 4.3 維吉尼亞州橋樑 55 第五章、混凝土耐久性模型之分析 59 5.1 應用部分係數法模型之使用年限分析結果 59 5.1.1 模型介紹 59 5.1.2 參數設定 62 5.1.3 分析結果與討論 64 5.1.3.1 不同模型使用年限分析結果 64 5.1.3.2 水膠比與使用年限之關係 72 5.1.3.3 保護層厚度與使用年限之關係 77 5.2 應用全機率法模型之使用年限分析結果 82 5.2.1 模型介紹及參數設定 82 5.2.2 分析結果與討論 84 第六章、針對台灣規範之建議 88 6.1 目標使用年限應用於台灣規範之執行流程圖 88 6.2 不同模型下氯離子擴散係數容許值探討 89 6.2.1 應用於台灣規範之氯離子擴散係數容許建議值 93 6.2.2 不同條件下之配比適用性 105 6.2.3 氯離子擴散係數與使用年限關係 171 第七章、結論與建議 182 7.1 結論 182 7.2 建議 184 參考文獻 185 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 混凝土耐久性 | zh_TW |
| dc.subject | 台灣混凝土設計規範 | zh_TW |
| dc.subject | 性能設計法 | zh_TW |
| dc.subject | 耐久性劣化模型 | zh_TW |
| dc.subject | 設計使用年限 | zh_TW |
| dc.subject | 氯離子擴散係數 | zh_TW |
| dc.subject | Performance-based design | en |
| dc.subject | Concrete durability | en |
| dc.subject | Chloride diffusion coefficient | en |
| dc.subject | Design service life | en |
| dc.subject | Durability deterioration models | en |
| dc.subject | Taiwan concrete design code | en |
| dc.title | 基於目標使用年限之混凝土設計規範架構研究 | zh_TW |
| dc.title | Investigation on the Framework of Concrete Design Codes Based on Target Service Life | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹穎雯 ;胡瑋秀 ;彭康瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Yin-Wen Chan;Wei-Hsiu Hu;Kang-Yu Peng | en |
| dc.subject.keyword | 混凝土耐久性,台灣混凝土設計規範,性能設計法,耐久性劣化模型,設計使用年限,氯離子擴散係數, | zh_TW |
| dc.subject.keyword | Concrete durability,Taiwan concrete design code,Performance-based design,Durability deterioration models,Design service life,Chloride diffusion coefficient, | en |
| dc.relation.page | 189 | - |
| dc.identifier.doi | 10.6342/NTU202503522 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
