請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98551完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韓玉山 | zh_TW |
| dc.contributor.advisor | Yu-San Han | en |
| dc.contributor.author | 吳俋賢 | zh_TW |
| dc.contributor.author | Yi-Hsien Wu | en |
| dc.date.accessioned | 2025-08-18T00:50:45Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | Armstrong, A., Ostle, N. J., & Whitaker, J. (2016). Solar park microclimate and vegetation management effects on grassland carbon cycling. Environmental Research Letters, 11(7), 074016.
Biresselioglu, M. E., Limoncuoglu, S. A., Demir, M. H., Reichl, J., Burgstaller, K., Sciullo, A., & Ferrero, E. (2021). Legal provisions and market conditions for energy communities in Austria, Germany, Greece, Italy, Spain, and Turkey: A comparative assessment. Sustainability, 13(20), 11212. Bureau of Energy, Ministry of Economic Affairs. (2023). 2023 Energy Statistics Handbook. Ministry of Economic Affairs, R.O.C. (In Chinese) Chang, P. H., Huang, P. Y., Cheng, Y. H., Su, W. Y., Wu, Y. H., & Hsu, C. J. (2023). Early warning evaluation of water quality parameters in hard clam and milkfish polyculture. Fisheries Research Bulletin, 82, 16–20. (In Chinese) Chang, P. H., Shih, C. H., & Kao, W. C. (2023). Optimizing the fishery and solar power symbiosis model for sustainable marine resource management: evaluating the effects of solar shading on the growth and water quality of Litopenaeus vannamei and chanos chanos. Water, 15(18), 3260. Chen, K. S. (2017a). Field survey on the issues faced by Taiwan's hard clam aquaculture industry. Fisheries Research Bulletin, 26, 35–40. (In Chinese) Chen, K. S. (2017b). Scientific aquaculture of hard clams. Fisheries Research Special Publication, 26, 35–40. (In Chinese) Chen, X. C., Kong, H. N., He, S. B., Wu, D. Y., Li, C. J., & Huang, X. C. (2009). Reducing harmful algae in raw water by light-shading. Process Biochemistry, 44(3), 357-360. Chou, Y. H., & Yeh, H. L. (2010). Using oxidation-reduction potential (ORP) as an indicator for evaluating the sediment quality in hard clam ponds. Fisheries Research Newsletter, 29, 10–14. (In Chinese) Dąbrowski, J., Czerniejewski, P., Brysiewicz, A., & Więcaszek, B. (2023). Morphometrics, Growth and Condition of the Invasive Bivalve Rangia cuneata during Colonisation of the Oder Estuary (North-Western Poland). Water, 15(19), 3331. Dayrit, G. B., Vera Cruz, E. M., Rodkhum, C., Mabrok, M., Ponza, P., & Santos, M. D. (2023). Potential influence of shading in freshwater ponds on the water quality parameters and the hematological and biochemical profiles of Nile tilapia (Oreochromis niloticus Linnaeus, 1758). Fishes, 8(6), 322. Dietrich, M., & Ayers, J. C. (2021). Influences on tidal channel and aquaculture shrimp pond water chemical composition in Southwest Bangladesh. Geochemical Transactions, 22(1), 2. Doğan, B., Driha, O. M., Balsalobre Lorente, D., & Shahzad, U. (2021). The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries. Sustainable Development, 29(1), 1-12. Ehiaguina, V. E., Izuka, U., Ninduwezuor-Ehiobu, N., Tula, O. A., & Bakare, A. D. (2023). Advancing solar integration in security and alarm systems: A review of innovations and challenge. Engineering Science & Technology Journal, 4(4), 222–234. Elshkaki, A., Graedel, T. E., Ciacci, L., & Reck, B. K. (2016). Copper demand, supply, and associated energy use to 2050. Global environmental change, 39, 305-315. Executive Yuan. (2017). Promoting new energy policy to achieve the 2025 nuclear-free homeland goal. Retrieved from https://www.ey.gov.tw/Page/9277F759E41CCD91/c094fb4e-6c07-4a87-9435-fb97f11dde10 (In Chinese) Fazey, I., Moug, P., Allen, S., Beckmann, K., Blackwood, D., Bonaventura, M., Burnett, K., Danson, M., Falconer, R., & Gagnon, A. S. (2018). Transformation in a changing climate: a research agenda. Climate and Development, 10(3), 197-217. Fritz, L. W., Calvo, L. M., Wargo, L., & Lutz, R. A. (2022). Seasonal changes in shell microstructure of some common bivalve molluscs in the mid-Atlantic region. Journal of Shellfish Research, 41(1), 1-59. Fisheries Research Institute, Ministry of Agriculture. (2017). Technical Manual 10: Hard clam aquaculture. Fisheries Research Institute Technical Manual Series, No. 10, 1–95. (In Chinese) Fisheries Research Institute, Ministry of Agriculture. (2024). Environmentally friendly operational manual for hard clam aquaculture: 21 practical cases to avoid common pitfalls. Fisheries Research Institute, Ministry of Agriculture. (In Chinese) Frühe, L., Cordier, T., Dully, V., Breiner, H. W., Lentendu, G., Pawlowski, J., Martins, C., Wilding, T. A., & Stoeck, T. (2021). Supervised machine learning is superior to indicator value inference in monitoring the environmental impacts of salmon aquaculture using eDNA metabarcodes. Molecular Ecology, 30(13), 2988-3006. Giltrap, M., Ronan, J., Tanner, C., O'Beirn, F. X., Lyons, B. P., Aoidh, R. M., Rochford, H., McHugh, B., McGovern, E., & Wilson, J. (2016). Application of a weight of evidence approach utilising biological effects, histopathology and contaminant levels to assess the health and pollution status of Irish blue mussels (Mytilus edulis). Marine Environmental Research, 122, 33-45. Guerin, T. F. (2019). Impacts and opportunities from large‐scale solar photovoltaic (PV) electricity generation on agricultural production. Environmental Quality Management, 28(4), 7-14. Güneralp, B., Zhou, Y., Ürge-Vorsatz, D., Gupta, M., Yu, S., Patel, P. L., Fragkias, M., Li, X., & Seto, K. C. (2017). Global scenarios of urban density and its impacts on building energy use through 2050. Proceedings of the National Academy of Sciences, 114(34), 8945-8950. Güneş, H., Simba, H. M. A., Karadağ, H., & Şit, M. (2023). Global energy transformation and the impacts of systematic energy change policy on climate change mitigation. Sustainability, 15(19), 14298. Hasanuzzaman, M., Zubir, U. S., Ilham, N. I., & Seng Che, H. (2017). Global electricity demand, generation, grid system, and renewable energy polices: a review. Wiley Interdisciplinary Reviews: Energy and Environment, 6(3), e222. Hoffacker, M. K., Allen, M. F., & Hernandez, R. R. (2017). Land-sparing opportunities for solar energy development in agricultural landscapes: a case study of the Great Central Valley, CA, United States. Environmental Science & Technology, 51(24), 14472-14482. Hsiao, Y. J., Chen, J. L., & Huang, C. T. (2021). What are the challenges and opportunities in implementing Taiwan's aquavoltaics policy? A roadmap for achieving symbiosis between small-scale aquaculture and photovoltaics. Energy Policy, 153, 112264. Hsieh, S. C., Huang, T. S., & Chang, C. W. (2019). Effects of sediment sulfides on hard clam aquaculture. Fisheries Research Bulletin, 69, 22–26. (In Chinese) Hsieh, T. E., & Chang, K. C. (2024). Mapping Solar Global Radiation and Beam Radiation in Taiwan. Energies, 17(23), 5874. Hsu, T. K. (2021). The effect of renewable energy on carbon dioxide emission in Taiwan: Quantile mediation analysis. Science Progress, 104(3), 1–13. Huang, S. M. (2012). Analysis and countermeasures of mass mortality of hard clams during summer high temperatures. Fisheries Research Bulletin, 76, 15–19. (In Chinese) Huang, S., Du, C., Jin, X., Zhang, D., Wen, S., & Jia, Z. (2023). The impact of carbon emission trading on renewable energy: A comparative analysis based on the CGE model. Sustainability, 15(16), 12649. Huang, Y. C., Chen, K. S., & Huang, T. C. (2017). Effects of different shading levels on pond sediment and macrobenthic communities in hard clam aquaculture. Fisheries Research Bulletin, 62, 44–47. (In Chinese) International Renewable Energy Agency (IRENA). (2024). Renewable capacity statistics 2024. IRENA. Kuo, J. C. (2002). Evaluation of production efficiency in different hard clam aquaculture models. Fisheries Research Newsletter, 5, 23–29. (In Chinese) Larance, S., Wang, J., Delavar, M. A., & Fahs, M. (2025). Assessing Water Temperature and Dissolved Oxygen and Their Potential Effects on Aquatic Ecosystem Using a SARIMA Model. Environments, 12(1), 25. Lee, A. C., Lee, K. T., & Pan, L. Y. (2011). Purification and kinetic characteristics of strombine dehydrogenase from the foot muscle of the hard clam (Meretrix lusoria). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 158(1), 38-45. Lin, C. Y. (2024). Analysis of differences in embankment vegetation and water quality between fisheries and electricity symbiosis and traditional aquaculture (Master’s thesis). Department of Aquaculture, National Pingtung University of Science and Technology. (In Chinese) Lin, C. T., & Chang, K. C. (2024). Effects of topography and geography on solar diffuse fraction modeling in Taiwan. Atmosphere, 15(7), 807. Lin, C. T., & Chang, K. C. (2024). Effects of topography and geography on solar diffuse fraction modeling in Taiwan. Atmosphere, 15(7), 807. Liu, C. H. (2020). Visualization analysis of ground-mounted solar photovoltaics—A case study of Taipower (Master’s thesis). Graduate Institute of Economics and Finance, Tamkang University. (In Chinese) Liuzzi, M. G., López-Gappa, J., & Olivieri, V. (2016). The clam Neilonella sulculata in San Jorge Gulf (Argentina, Southwest Atlantic): spatial distribution pattern and inverse relationship between size and density. Marine Biology Research, 12(6), 621-630. Ludwig, G. M., Stone, N. M., & Collins, C. B. (1998). Fertilization of fish fry ponds (Vol. 469). Southern Regional Aquaculture Center. Majumdar, D., & Pasqualetti, M. J. (2019). Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA. Renewable energy, 134, 1213-1231. Makhija, S. P., Dubey, S., Bansal, R., & Jena, P. K. (2021). Techno-environ-economical analysis of floating PV/on-ground PV/grid extension systems for electrification of a remote area in India. Technology and Economics of Smart Grids and Sustainable Energy, 6, 1-10. Matulić, D., Andabaka, Ž., Radman, S., Fruk, G., Leto, J., Rošin, J., Rastija, M., Varga, I., Tomljanović, T., & Čeprnja, H. (2023). Agrivoltaics and aquavoltaics: Potential of solar energy use in agriculture and freshwater aquaculture in Croatia. Agriculture, 13(7), 1447. Mbelu, O. V., Adeyinka, A. M., Yahya, D. I., Adediji, Y. B., & Njoku, H. (2024). Advances in solar pond technology and prospects of efficiency improvement methods. Sustainable Energy Research, 11(1), 18. Ministry of Economic Affairs. (2018). Implementation guidelines for the “Green Energy Roof top Participation Program”. Retrieved from https://law.moea.gov.tw/LawCont ent.aspx?id=GL000511 (In Chinese) Ministry of Agriculture. (2023). 2023 aquaculture statistics. Executive Yuan, Ministry of Agriculture. (In Chinese) Moore, B., Verfuerth, C., Minas, A. M., Tipping, C., Mander, S., Lorenzoni, I., Hoolohan, C., Jordan, A. J., & Whitmarsh, L. (2021). Transformations for climate change mitigation: A systematic review of terminology, concepts, and characteristics. Wiley Interdisciplinary Reviews: Climate Change, 12(6), e738. Nebey, A. H., Taye, B. Z., & Workineh, T. G. (2020). GIS‐Based Irrigation Dams Potential Assessment of Floating Solar PV System. Journal of Energy, 2020(1), 1268493. Nugroho, A., & Santoso, J. (2024). Environmental Impact Evaluation of Floating Solar Power Plant in Cirata Reservoir, West Java. Water Science and Technology, 2(01), 9-16. Podolchuk, D. (2023). Exploring the Relationship Between the EU Emissions Trading System and Renewable Energy Development in the EU. International Science Journal of Management, Economics & Finance, 2(3), 1-12. Pringle, A. M., Handler, R., & Pearce, J. M. (2017). Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture. Renewable and Sustainable Energy Reviews, 80, 572-584. Ryszawska, B., Rozwadowska, M., Ulatowska, R., Pierzchała, M., & Szymański, P. (2021). The power of Co-creation in the energy transition—DART model in citizen energy communities projects. Energies, 14(17), 5266. Shalaby, M. M., Nassar, I. N., & Abdallah, A. M. (2021). Evaporation suppression from open water surface using various floating covers with consideration of water ecology. Journal of Hydrology, 598, 126482. Shutters, S. T., Waters, K., & Muneepeerakul, R. (2022). Triad analysis of global energy trade networks and implications for energy trade stability. Energies, 15(10), 3673. Singh, P., Bagrania, J., & Haritash, A. (2019). Seasonal behaviour of thermal stratification and trophic status in a sub-tropical Palustrine water body. Applied Water Science, 9, 1-6. Staff Reports. (2023, July 6). Floating solar panels creating energy, saving water. Florida Specifier, 45(3). https://floridaspecifier.com/ Suzuki, S., Otomo, Y., Dazai, A., Abe, T., & Kondoh, M. (2024). Assessing the impacts of aquaculture on local fish communities using environmental DNA metabarcoding analysis. Environmental DNA, 6(3), e551. Tadesse, I., Green, F., & Puhakka, J. (2004). Seasonal and diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond system® treating tannery effluent. Water research, 38(3), 645-654. Tapiador, D. D., Henderson, H. F., Delmendo, M. N., & Tsutsui, H. (1976). Freshwater fisheries and aquaculture in China: A report of the FAO Fisheries (Aquaculture) Mission to China (21 April – 12 May 1976) (FAO Fisheries Technical Paper No. 168). Food and Agriculture Organization of the United Nations. Trapani, K., & Redón Santafé, M. (2015). A review of floating photovoltaic installations: 2007–2013. Progress in Photovoltaics: Research and Applications, 23(4), 524-532. Tucker, C. S., & D’Abramo, L. R. (2008). Managing high pH in freshwater ponds. Southern Regional Aquaculture Center Stoneville. van der Geest, M., van Der Lely, J. A., van Gils, J. A., Piersma, T., & Lok, T. (2019). Density-dependent growth of bivalves dominating the intertidal zone of Banc d’Arguin, Mauritania: importance of feeding mode, habitat and season. Marine Ecology Progress Series, 610, 51-63. Vasconcelos, P., Moura, P., Pereira, F., Pereira, A. M., & Gaspar, M. B. (2018). Morphometric relationships and relative growth of 20 uncommon bivalve species from the Algarve coast (southern Portugal). Journal of the Marine Biological Association of the United Kingdom, 98(3), 463-474. Wang, T. W., Chang, P. H., Huang, Y. S., Lin, T. S., Yang, S. D., Yeh, S. L., Tung, C. H., Kuo, S. R., Lai, H. T., & Chen, C. C. (2022). Effects of floating photovoltaic systems on water quality of aquaculture ponds. Aquaculture Research, 53(4), 1304-1315. Yang, C. M. (2024). Investigation of the causes and countermeasures of slow growth and mass mortality in hard clam aquaculture. Fisheries Research Newsletter, 5, 18–25. (In Chinese) Yang, P., Chua, L. H., Irvine, K. N., Nguyen, M. T., & Low, E. W. (2022). Impacts of a floating photovoltaic system on temperature and water quality in a shallow tropical reservoir. Limnology, 23(3), 441-454. Zeadeh, D., Albalasmeh, A., Mohawesh, O., & Unami, K. (2024). Shading solutions for sustainable water management: impact of colors and intensities on evaporation and water quality. Applied Water Science, 14(5), 97. Zorita, I., Juez, A., Solaun, O., Muxika, I., & Rodríguez, J. G. (2021). Stocking density effect on the growth and mortality of juvenile European flat oyster (Ostrea edulis Linnaeus, 1758). Aquaculture, Fish and Fisheries, 1(1), 60-65. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98551 | - |
| dc.description.abstract | 隨著全球能源轉型及土地利用衝突日益加劇,臺灣西部沿海地區逐漸成為太陽能光電發展的重點區域。為兼顧再生能源推廣與漁業生計需求,本研究提出「堤岸廊道型漁電共生」模式,透過將光電設施設置於魚塭岸邊,避免大面積遮蔽水體,降低對水質環境與養殖生物之干擾。此模式可確保約85%以上水域每日維持8小時以上直射日照,並藉適度遮蔭緩解夏季高溫壓力、降低水分蒸發及藻華風險,為土地資源有限地區提供一種兼顧能源生產與漁業經濟的可行策略。
本研究於2024年3月至11月在臺南市北門地區進行田間試驗,設置實驗組與對照組,並採用80萬及90萬顆 ha⁻¹兩種放養密度。透過SketchUp與SunHours模擬不同節氣的日照條件,並以Hydrolab設備監測水溫、pH、鹽度、溶氧與氧化還原電位等水質指標。養殖期間每兩個月隨機採樣,量測文蛤殼長、殼寬、殼高與全重,進而計算Fulton體況指數(K值)、緊實指數(CI)與延展指數(EI),以評估生長表現。最終根據收成數據計算存活率與產量,以綜合分析各處理組別之養殖成效。 結果顯示,實驗組於夏季降低水溫約0.8–1.4 °C,進而有效減緩季節性水質波動,並在乾季期間有效抑制鹽度上升。在文蛤成長方面,放養密度為90萬的實驗組於盛夏期間,K值達40.8,顯著優於對照組,顯示適度遮蔭可緩解熱緊迫所導致之生長壓力;CI表現則呈現季節性補償變化,EI則全期維持在0.83–0.88範圍,顯示殼型未受顯著影響。存活率和產量方面,放養密度為90萬顆ha⁻¹組別中,實驗組存活率為79%,總產量為10,800公斤;對照組存活率則為42%,總產量為12,600公斤,顯示遮蔭處理有助於提升文蛤之存活與生長表現。相較之下,在放養密度為80萬顆ha⁻¹的組別中,實驗組存活率為63%,總產量為4,200 公斤;對照組存活率則為83%,總產量為5,400公斤。 整體而言,「堤岸廊道型漁電共生」模式在不影響產量和成長的前提下,可同時提升土地資源利用效率與能源收益,對臺灣沿海地區之高密度文蛤養殖具有良好的應用潛力及示範價值。 | zh_TW |
| dc.description.abstract | With the growing demand for energy transition and increasing land-use conflicts, Taiwan's western coastal areas have become a major zone for solar power development. To balance renewable energy promotion with the needs of the aquaculture industry, this study proposes an “Embanked Solar PV Symbiosis for Clam” model. By installing solar panels along the pond banks, this design avoids large-scale shading of the water surface, thereby reducing potential impacts on water quality and aquatic organisms. The model ensures that over 85% of the water area receives more than 8 hours of direct sunlight daily, while the partial shading helps mitigate summer heat stress, reduce water evaporation, and lower algal bloom risk. This offers a feasible strategy for regions with limited land resources to achieve both energy production and aquaculture development.
Field experiments were conducted in Beimen District, Tainan, from March to November 2024. The study included an experimental group and a control group, each tested under two stocking densities: 800,000 and 900,000 clams per hectare. Solar exposure simulations for seasonal solstices and equinoxes were conducted using SketchUp and SunHours. Water quality parameters including temperature, pH, salinity, dissolved oxygen (DO), and oxidation reduction potential (ORP) were monitored using Hydrolab equipment. Every two months, random samples were collected to measure shell length, width, height, and total weight. Fulton’s condition index (K), compactness index (CI), and elongation index (EI) were calculated to assess growth performance. At harvest, survival rate and yield were also calculated to evaluate the effectiveness of each treatment. Results showed that, in the summer, shading reduced water temperature by approximately 0.8–1.4 °C and stabilized seasonal water quality. During the dry season, salinity increase was effectively suppressed. Under 900,000 clams/ha stocking, the experimental group had a peak K-value of 40.8 during summer, significantly higher than the control, indicating reduced heat stress. CI showed seasonal compensation, while EI remained stable between 0.83 and 0.88, suggesting shell shape was not affected. In terms of survival rate and yield, in the group with a stocking density of 900,000 clams/ha, the experimental group had a survival rate of 79% and a total yield of 10,800 kg, while the control group had a survival rate of 42% and a total yield of 12,600 kg, indicating that shading treatment helps improve the survival and growth performance of clams. In contrast, in the group with a stocking density of 800,000 clams/ha, the experimental group had a survival rate of 63% and a total yield of 4,200 kg, while the control group had a survival rate of 83% and a total yield of 5,400 kg. Overall, the “Embanked Solar PV Symbiosis for Clam” model demonstrated its potential to enhance land-use efficiency and energy benefits without compromising aquaculture performance. It shows strong promise for application in Taiwan’s coastal high-density clam farming areas. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:50:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:50:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 III Abstract IV Contents VI List of figures IX List of tables XIV 1. Literature review 1 1.1. Global renewable energy development 1 1.2. Renewable energy development in Taiwan 2 1.3. Emergence and development of aquavoltaics 3 1.4. Embanked solar photovoltaic systems 6 1.5. Challenges in Taiwan clam aquaculture 7 2. Experimental objectives 10 3. Materials and methods 12 3.1. Experimental site 12 3.2. PV module construction 12 3.3. Water quality 13 3.4. Growth analysis 14 3.5. Statistical analysis 15 4. Results 16 4.1. Analysis of simulated sunlight hours 16 4.2. Water quality 16 4.2.1. Temperature 16 4.2.2. pH 17 4.2.3. Salinity 17 4.2.4. DO 17 4.2.5. ORP 18 4.3. Growth 18 4.3.1. Fulton's K condition factor 18 4.3.2. Compactness index 18 4.3.3. Elongation index 19 4.3.4. Survival rate and stocking density 19 5. Discussion 20 5.1. Analysis of simulated sunlight hours 20 5.2. Water quality 21 5.2.1 Temperature 21 5.2.2. pH 22 5.2.3. Salinity 22 5.2.4. DO 23 5.2.5. ORP 23 5.3. Growth 24 5.3.1. Fulton's K 24 5.3.2. Compactness index 25 5.3.3. Elongation index 25 5.3.4.Survival rate and stocking density 26 6. Conclusion 28 References 29 | - |
| dc.language.iso | en | - |
| dc.subject | 堤岸型光電 | zh_TW |
| dc.subject | 文蛤養殖 | zh_TW |
| dc.subject | 漁電共生 | zh_TW |
| dc.subject | 水質監測 | zh_TW |
| dc.subject | 再生能源 | zh_TW |
| dc.subject | Renewable energy | en |
| dc.subject | Aquavoltaics | en |
| dc.subject | Embanked photovoltaic system | en |
| dc.subject | Clam farming | en |
| dc.subject | Water quality monitoring | en |
| dc.title | 漁電共生之堤岸型文蛤養殖評估:成長、水質及場域建模 | zh_TW |
| dc.title | Assessment of Embankment Aquaculture–Photovoltaic Symbiosis for Clam Farming: Growth, Water Quality, and Site Modeling | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 張秉宏 | zh_TW |
| dc.contributor.coadvisor | Ping-Hung Chang | en |
| dc.contributor.oralexamcommittee | 侯文祥;鄭文騰 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Shyiang Hou;Win-Ton Cheng | en |
| dc.subject.keyword | 再生能源,漁電共生,堤岸型光電,文蛤養殖,水質監測, | zh_TW |
| dc.subject.keyword | Renewable energy,Aquavoltaics,Embanked photovoltaic system,Clam farming,Water quality monitoring, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202503372 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-10 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
