Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98541
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅弘岳zh_TW
dc.contributor.advisorHong-Yueh Loen
dc.contributor.author黃禹之zh_TW
dc.contributor.authorYu-Chih Huangen
dc.date.accessioned2025-08-18T00:48:20Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citationAbdulwahab, M. R., Ali, Y. H., Habeeb, F. J., Borhana, A. A., Abdelrhman, A. M., and Al-Obaidi, S. M. A. (2020). A review in particle image velocimetry techniques (developments and applications). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 65(2):213–229.
Adrian, R. J. (1984). Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs. particle image velocimetry. Applied Optics, 23(11):1690–1691.
Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23(1):261–304.
Airy, G. B. (1845). Tides and Waves. Encyclopaedia Metropolitana, London.
Bailard, J. A., DeVries, J. W., and Kirby, J. T. (1992). Considerations in using Bragg reflection for storm erosion protection. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(1):62–74.
Bakker, A. et al. (2021). Optical properties of LEDs for underwater visualization. Journal of Experimental Marine Optics, 44(2):123–135.
Batchelor, G. K. (2000). An Introduction to Fluid Dynamics. Cambridge University Press.
Bragg, W. H. and Bragg, W. L. (1913). The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 88(605):428–438.
Carrera, G. (2015). A precise capacitive water level sensor. https:// ardupiclab.blogspot.com/2015/11/a-precise-capacitive-water-level-sensor.html.
Dean, R. G. and Dalrymple, R. A. (1991). Water Wave Mechanics for Engineers and Scientists, volume 2 of Advanced Series on Ocean Engineering. World Scientific, Singapore.
Ding, W.-W., Yue, W.-Z., Sheng, S.-W., Wu, J.-P., and Zou, Z.-J. (2022). Numerical and experimental study on the Bragg reflection of water waves by multiple vertical thin plates. Journal of Marine Science and Engineering, 10(10):1464.
Dingemans, M. W. (1997). Water Wave Propagation Over Uneven Bottoms, volume 13 of Advanced Series on Ocean Engineering. World Scientific, Singapore.
Fenton, J. D. (1999). The cnoidal theory of water waves. In Herbich, J. B., editor, Developments in Offshore Engineering, chapter 2. Gulf Publishing Company, Houston.
Gao, J., Ma, X., Dong, G., Chen, H., Liu, Q., and Zhang, J. (2021). Investigation on the effects of Bragg reflection on harbor oscillations. Coastal Engineering, 170:103977.
Garcia, D. (2010). Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics & Data Analysis, 54(4):1167–1178.
Goda, Y. and Suzuki, Y. (1976). Estimation of incident and reflected waves in random wave experiments. Proceedings of Coastal Engineering 1976, pages 828–845. Port and Harbour Research Institute, Ministry of Transport, Japan.
Heathershaw, A. D. (1982). Seabed-wave resonance and sand bar growth. Nature,296(5855):343–345.
Hsu, T.-W., Hsieh, C.-M., and Hwang, R. R. (2004). Using RANS to simulate vortex generation and dissipation around impermeable submerged double breakwaters. Coastal Engineering, 51:557–579.
Hsu, T.-W., Lin, J.-F., Hsiao, S.-C., Ou, S.-H., Babanin, A. V., and Wu, Y.-T. (2014). Wave reflection and vortex evolution in Bragg scattering in real fluids. Ocean Engineering, 88:508–519.
Hughes, S. A. (1991). Physical Models and Laboratory Techniques in Coastal Engineering. World Scientific, Singapore.
Isaacson, M., Premasiri, S., and Yang, G. (1998). Wave interactions with vertical slotted barrier. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124:118–126.
Jahanmiri, M. (2011). Particle image velocimetry: Fundamentals and its applications. Department of Applied Mechanics, Chalmers University of Technology, Sweden.
Jarlan, G. E. (1961). A perforated vertical wall breakwater. The Dock and Harbour Authority, 41(486):394–398.
Keane, R. D. and Adrian, R. J. (1990). Optimization of particle image velocimeters. Part I: Double pulsed systems. Measurement Science and Technology, 1(11):1202–1215.
Keane, R. D. and Adrian, R. J. (1992). Theory of cross-correlation analysis of PIV images. Applied Scientific Research, 49(3):191–215.
Kim, J., Jeong, S., and Kim, Y. (2022). Analysis of relative wave elevation around semisubmersible platform through model test: Focusing on comparison of wave probe characteristics. In Proceedings of the ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering (OMAE2022), volume 7A: Ocean Engineering, pages 1–7, Hamburg, Germany. ASME.
Kirby, J. T. and Anton, J. P. (1990). Bragg reflection of waves by artificial bars. In Proceedings of the 22nd International Conference on Coastal Engineering, pages 757–768, New York. ASCE.
Kompenhans, J. and Reichmuth, J. (1986). Particle imaging velocimetry in a low turbulent wind tunnel and other flow facilities. In Advanced Instrumentation for Aero Engine Components, volume 35, page 2.
Le Méhauté (1976). An Introduction to Hydrodynamics and Water Waves. Springer-Verlag, New York.
Lenshunters (2021). Flange focal distance and Why it Matters. https://lenshunters.com/flange-focal-distance-and-why-it-matters.
Losada, I. J., Losada, M. A., and Roldán, A. J. (1992). Propagation of oblique incident waves past rigid vertical thin barriers. Applied Ocean Research, 14:191–199.
Madsen, O. S. (1971). On the generation of long waves. Journal of Geophysical Research, 76(36):8672–8683.
Mei, C. C. (1985). Resonance reflection of surface waves by a periodic sand bar. Journal of Fluid Mechanics, 152:315–335.
Melling, A. (1997). Tracer particles and seeding for particle image velocimetry. Measurement Science and Technology, 8(12):1406–1416.
Miles, J. W. (1990). Wave reflection from a gentle sloping beach. Journal of Fluid Mechanics, 214:59–66.
Nakamura, J. (2017). Image Sensors and Signal Processing for Digital Still Cameras. CRC Press, Boca Raton, FL.
Oumeraci, H. and Koether, R. (2009). Wave damping using arrays of submerged perforated plates. In Proceedings of the Coastal Structures Conference.
Pickering, C. J. D. and Halliwell, N. (1984). LSP and PIV: photographic film noise. Applied Optics, 23(17):2961–2969.
Prosser, D. J., Jordan, T. E., Nagel, J. L., et al. (2018). Impacts of coastal land use and shoreline armoring on estuarine ecosystems: An introduction to a special issue. Estuaries and Coasts, 41:2–18.
Raffel, M., Willert, C., Scarano, F., Kähler, C. J., and Wereley, S. T. (2018). Particle Image Velocimetry: A Practical Guide. Springer, 3rd edition.
Scarano, F. (2013). PIV and the third dimension: tomographic PIV and 3D-PTV. Measurement Science and Technology, 24(1):012001.
Scarano, F. and Riethmuller, M. L. (1999). Iterative multigrid approach in PIV image processing with discrete window offset. Experiments in Fluids, 26(6):513–523.
Sciacchitano, A. and Wieneke, B. (2016). PIV uncertainty propagation. Measurement Science and Technology, 27(8):084006.
Shavit, U., Lowe, R. J., and Steinbuck, J. V. (2007). Intensity capping: A simple method to improve cross-correlation PIV results. Experiments in Fluids, 42(2):225–240.
Shin, D. M. and Cho, Y. (2016). Diffraction of waves past two vertical thin plates on the free surface: A comparison of theory and experiment. Ocean Engineering, 34(17–18):2305–2314.
Smith, R. C. and Baker, K. S. (1981). Optical properties of the clearest natural waters (200–800 nm). Applied Optics, 20(2):177–184.
Stokes, G. G. (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8:441–455.
Swamy, R. S., Sykes, J. M., and Most, S. P. (2010). Principles of photography in rhinoplasty for the digital photographer. Clinics in Plastic Surgery, 37(2):213–224.
Tao, A., Yan, J., Wang, Y., Zheng, J., Fan, J., and Qin, C. (2017). Wave power focusing due to the Bragg resonance. China Ocean Engineering, 31:458–465.
Thielicke, W. and Sonntag, R. (2021). Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. Journal of Open Research Software, 9(1).
Thielicke, W. and Stamhuis, E. J. (2014). PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of Open Research Software, 2(1):e30.
Westerweel, J. (1993). Analysis of PIV interrogation with low-pixel resolution. In Optical Diagnostics in Fluid and Thermal Flow, pages 624–635.
Westerweel, J., Dabiri, D., and Gharib, M. (1997). The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Experiments in Fluids, 23(1):20–28.
Wu, J., Luo, H., Zou, Z., Chen, P., Qi, J., and Xu, X. (2023). Experimental study on the hydrodynamic characteristics of a Bragg breakwater with triple vertical plates. IOP Conference Series: Materials Science and Engineering, 1288:012042.
Zhao, K. and Liu, P. L.-F. (2022). On Stokes wave solutions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478(2262):20210732.
Zhao, K., Wang, Y., and Liu, P. L.-F. (2024). A guide for selecting periodic water wave theories–Le Méhauté (1976)'s graph revisited. Coastal Engineering, 188:104432.
林立剛(2021). N 型波傳遞之數值模擬與實驗驗證. 碩士論文, 國立臺灣大學工程科學及海洋工程研究所, 臺北.
辛晨毓(2025). 波浪通過雙層潛沒式穿孔消波裝置時之流場行為研究. In 第37 屆中國造船暨輪機工程研討會, 台灣. 中國造船暨輪機工程學會.
邱信瀚(2024). 以水槽實驗探討潛沒式穿孔消波裝置之消波效率. 碩士論文, 國立臺灣大學工程科學及海洋工程研究所, 臺北.
陳玟諭(2023). 前導下沉N 型海嘯波於不同傳遞距離之溯升. 碩士論文, 國立臺灣大學工程科學及海洋工程研究所, 臺北.
黃俊瑞(2022). 前導下沉N 型海嘯波之傳遞與溯升. 碩士論文, 國立臺灣大學工程科學及海洋工程研究所, 臺北.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98541-
dc.description.abstract陣列式海洋結構物與單一結構物在波浪反射行為上存在本質差異,前者會在相鄰結構間引發波浪之干涉作用。透過調整結構物間距,可放大或削弱反射波之強度,此由週期性結構所導致之干涉現象即為布拉格散射(Bragg scattering)。當結構間距B 約為入射波波長L 的一半,即B/L ≈ (2n)/4, n = 1, 2, . . . 時,反射波會產生共振性增強,稱為布拉格共振;當B/L ≈ (2n + 1)/4, n = 0, 1, . . . 時則出現破壞性干涉,導致反射波強度顯著下降。雖然傳統布拉格共振與干涉條件的經典理論已能對上述行為提供合理解釋與預測,然而在現有的研究中,多數情況下反射波的極值往往並未剛好出現在上述預測的B/L 下,且相關實驗數據多半零散、品質不一。為釐清上述問題,本研究選用最簡化之結構形式「直立式薄型結構物」作為研究對象,其厚度極薄,可視為數學模型中之零厚度邊界。本文首先基於線性勢流理論,推導週期波通過單層與雙層結構物陣列的理論解析解;為驗證線性理論結果,進一步於二維水槽中進行實驗觀測。實驗中使用超音波感測器搭配Goda 兩點法求得反射係數Cr 與透射係數Ct;同時使用粒子影像測速法(PIV)觀測流場分佈與渦度變化。結果顯示,Cr 的極值位置皆較傳統布拉格散射預測略偏低頻,此現象不僅出現在線性理論推導中,亦於實驗中反覆觀察,顯示此偏移現象具有一定普遍性。此外,在相對潛沒深度d/h 較淺或較接近淺水波條件時,實驗中觀察到強烈局部渦旋,導致實測流場結果與線性理論預測產生明顯偏差;但在d/h 較深情況下,線性勢流理論模型能合理捕捉流場行為與反射特性。整體而言,本研究從理論與實驗雙重角度探討潛沒式結構物的布拉格干涉行為與共振特性,並觀察共振位置偏移與渦流影響。zh_TW
dc.description.abstractMultiple marine structures exhibit fundamentally different wave reflection behaviors compared to single structures, the former induces wave interference between adjacent elements. By adjusting the spacing between structures, the intensity of reflected waves can be either amplified or reduced. This interference phenomenon, caused by periodic structures, is known as Bragg scattering. When the structural spacing B is approximately half the incident wavelength L, i.e., B/L ≈ 2n/4, n = 1, 2, . . . , a resonant enhancement of reflection, termed Bragg resonance, occurs. Conversely, when B/L ≈ (2n + 1)/4,
n = 0, 1, . . . , destructive interference arises, leading to significantly reduced reflection. Although classical Bragg theory provides reasonable explanations and predictions for such behavior, existing studies have shown that the peak and trough positions of the reflection coefficient often do not align exactly with the predicted B/L ratios. Furthermore, relevant experimental data are frequently scattered and inconsistent in quality. To clarify these issues, this study investigates the simplified case of vertical thin plate, idealized
as zero-thickness boundaries in the mathematical model. Theoretical solutions based on linear potential flow theory are first derived for periodic waves interacting with single-barrier and double-barrier arrays. To validate these solutions, experiments are conducted in a 2D wave flume. In the experiments, ultrasonic wave gauges are employed in combination with the Goda method to calculate the reflection coefficient Cr and transmission coefficient Ct. Simultaneously, Particle Image Velocimetry (PIV) technique is used to observe flow field distributions and vorticity evolution. Results indicate that the peak
positions of Cr are consistently shifted toward lower frequencies compared to classical Bragg predictions. This deviation is observed not only in theoretical predictions but also repeatedly confirmed in experiments, suggesting its generality. Moreover, under shallow relative submergence depths (d/h) or shallower water wave conditions, strong local vortices are observed, resulting in noticeable discrepancies between measured and theoretical flow fields. However, for deeper submergence conditions, the linear potential model adequately captures both flow field behavior and wave reflection characteristics. Overall, this study investigates the Bragg interference and resonance behavior of submerged vertical
thin structures from both theoretical and experimental perspectives, highlighting the frequency shift of resonant conditions and the influence of vortex structures.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:48:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T00:48:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 i
摘要 iii
Abstract v
目次 vii
圖次 xi
表次 xxi
第一章緒論 1
1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 本文組織架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
第二章理論基礎 9
2.1 週期波參數與波浪分類. . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Stokes wave 理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 週期波作用於直立式薄型結構物之理論模型. . . . . . . . . . . . . 13
2.3.1 單層直立式薄型結構物. . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 雙層直立式薄型結構物. . . . . . . . . . . . . . . . . . . . . . . 17
2.4 渦度定義與計算方法. . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 二階週期波造波理論. . . . . . . . . . . . . . . . . . . . . . . . . . 20
第三章實驗設置 23
3.1 二維斷面平推式造波水槽. . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1 平推式造波系統. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 造波運動控制. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 水槽末端消波斜板. . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 直立式薄型結構物設計. . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 超音波感測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 自製電容式波高計. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 設計原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 操作流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.3 儀器驗證. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.4 電容式波高計與超音波感測器之比較. . . . . . . . . . . . . . . 49
3.5 PIV 量測系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.1 高強度LED 光源系統. . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2 流場追蹤物質. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.3 高速攝影機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 實驗座標系統與PIV 量測參數. . . . . . . . . . . . . . . . . . . . . 55
第四章實驗方法 59
4.1 水面資料數據處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Goda 兩點法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 實驗驗證. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 粒子影像測速法(PIV) . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 PIV 量測原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.2 PIVlab 影像分析. . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2.1 影像預處理. . . . . . . . . . . . . . . . . . . . . . . 69
4.4.2.2 PIV 分析方法. . . . . . . . . . . . . . . . . . . . . . 71
4.4.2.3 影像後處理. . . . . . . . . . . . . . . . . . . . . . . 74
第五章實驗結果與討論 77
5.1 試探性試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 超音波感測器配置測試. . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 直立式薄型結構物之實驗結果與線性理論比較. . . . . . . . . . . . 86
5.3.1 單層直立式薄型結構物. . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 雙層直立式薄型結構物. . . . . . . . . . . . . . . . . . . . . . . 90
5.3.3 綜合討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 PIV 流場觀察實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.1 Case A(d/h=0.5, kh=1.139) . . . . . . . . . . . . . . . . . . . . 96
5.4.2 Case B(d/h=0.2, kh=0.501) . . . . . . . . . . . . . . . . . . . . 105
5.4.3 綜合討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
第六章結論與未來展望 119
6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
參考文獻 123
-
dc.language.isozh_TW-
dc.subject布拉格散射zh_TW
dc.subject垂直薄板zh_TW
dc.subjectGoda 兩點法zh_TW
dc.subjectPIVzh_TW
dc.subject波浪反射係數zh_TW
dc.subject渦度場zh_TW
dc.subjectGoda methoden
dc.subjectBragg scatteringen
dc.subjectvorticity fielden
dc.subjectwave reflection coefficienten
dc.subjectPIVen
dc.subjectvertical thin plateen
dc.title以水槽實驗研究波浪經過直立式薄型結構物與布拉格 散射之關係zh_TW
dc.titleInvestigation of Wave–Structure Interaction and Bragg Scattering Induced by Thin Vertical Plates in a Laboratory Wave Flumeen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee戴璽恆;吳昀達zh_TW
dc.contributor.oralexamcommitteeSi-Heng Dai;Yun-Ta Wuen
dc.subject.keyword布拉格散射,垂直薄板,Goda 兩點法,PIV,波浪反射係數,渦度場,zh_TW
dc.subject.keywordBragg scattering,vertical thin plate,Goda method,PIV,wave reflection coefficient,vorticity field,en
dc.relation.page129-
dc.identifier.doi10.6342/NTU202501445-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf35.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved