請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98534完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文章 | zh_TW |
| dc.contributor.advisor | Wen-Chang Chen | en |
| dc.contributor.author | 黃品瑄 | zh_TW |
| dc.contributor.author | Pin-Hsuan Huang | en |
| dc.date.accessioned | 2025-08-14T16:29:16Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | [1] C. a. Di, F. Zhang, D. Zhu, Advanced Materials 2013, 25, 313.
[2] A. Salehi, X. Fu, D. H. Shin, F. So, Advanced Functional Materials 2019, 29, 1808803. [3] G. Hong, X. Gan, C. Leonhardt, Z. Zhang, J. Seibert, J. M. Busch, S. Bräse, Advanced Materials 2021, 33, 2005630. [4] L. Duan, A. Uddin, Advanced Science 2020, 7, 1903259. [5] Z. A. Lamport, H. F. Haneef, S. Anand, M. Waldrip, O. D. Jurchescu, Journal of Applied Physics 2018, 124. [6] Y. Yu, Q. Ma, H. Ling, W. Li, R. Ju, L. Bian, N. Shi, Y. Qian, M. Yi, L. Xie, Advanced Functional Materials 2019, 29, 1904602. [7] J. Tao, W. Sun, L. Lu, Biosensors and Bioelectronics 2022, 216, 114667. [8] J. Zaumseil, H. Sirringhaus, Chemical Reviews 2007, 107, 1296. [9] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank, K. R. Mann, Chemistry of Materials 2004, 16, 4436. [10] S. Riera‐Galindo, F. Leonardi, R. Pfattner, M. Mas‐Torrent, Advanced Materials Technologies 2019, 4, 1900104. [11] P. W. Blom, Advanced Materials Technologies 2020, 5, 2000144. [12] Y.-H. Chou, H.-C. Chang, C.-L. Liu, W.-C. Chen, Polymer Chemistry 2015, 6, 341. [13] C.-C. Shih, W.-Y. Lee, W.-C. Chen, Materials Horizons 2016, 3, 294. [14] L. Shao, Y. Zhao, Y. Liu, Advanced Functional Materials 2021, 31, 2101951. [15] E. Restuccia, A. Ghobadi, S. Guha, Advanced Materials Interfaces 2025, 2401035. [16] C. Zheng, Y. Liao, S. T. Han, Y. Zhou, Advanced Electronic Materials 2020, 6, 2000641. [17] S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang, S. Jin, Y. Shao, J. Huang, Advanced Functional Materials 2019, 29, 1903700. [18] Y. Guo, G. Yu, Y. Liu, Advanced Materials 2010, 22, 4427. [19] S. Lee, S. Kim, H. Yoo, Polymers 2021, 13, 3774. [20] K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, D. Y. Kim, Advanced Functional Materials 2008, 18, 3678. [21] Z. Zhu, Y. Guo, Y. Liu, Materials Chemistry Frontiers 2020, 4, 2845. [22] R. C. Naber, K. Asadi, P. W. Blom, D. M. De Leeuw, B. De Boer, Advanced Materials 2010, 22, 933. [23] A. I. Khan, A. Keshavarzi, S. Datta, Nature Electronics 2020, 3, 588. [24] M. Xu, X. Zhang, S. Li, T. Xu, W. Xie, W. Wang, Journal of Materials Chemistry C 2019, 7, 13477. [25] Y.-C. Lin, W.-C. Yang, Y.-C. Chiang, W.-C. Chen, Small Science 2022, 2, 2100109. [26] Y. J. Jeong, D.-J. Yun, S. H. Noh, C. E. Park, J. Jang, ACS nano 2018, 12, 7701. [27] J. Chang, C. H. Shin, Y. J. Park, S. J. Kang, H. J. Jeong, K. J. Kim, C. J. Hawker, T. P. Russell, D. Y. Ryu, C. Park, Organic Electronics 2009, 10, 849. [28] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234. [29] Y. Chen, H. Wang, Y. Yao, Y. Wang, C. Ma, P. Samorì, Advanced Materials 2021, 33, 2103369. [30] X. Wang, X. Zhang, Z. Cheng, J. Zhao, Y. Liu, X. Wu, H. Tian, T. G. Chulkova, S. A. Miltsov, A. V. Yakimansky, The Journal of Physical Chemistry C 2024, 128, 10742. [31] T. J. Penfold, E. Gindensperger, C. Daniel, C. M. Marian, Chemical Reviews 2018, 118, 6975. [32] Y. Pan, J. Li, X. Wang, Y. Sun, J. Li, B. Wang, K. Zhang, Advanced Functional Materials 2022, 32, 2110207. [33] X.-K. Chen, D. Kim, J.-L. Brédas, Accounts of Chemical Research 2018, 51, 2215. [34] Z. Qin, H. Gao, H. Dong, W. Hu, Advanced Materials 2021, 33, 2007149. [35] J. Li, H. Gong, J. Zhang, S. Zhou, L. Tao, L. Jiang, Q. Guo, Frontiers in Chemistry 2021, 9, 693813. [36] L. G. Franca, D. G. Bossanyi, J. Clark, P. L. Dos Santos, ACS Applied Optical Materials 2024, 2, 2476. [37] B. Li, M. Liu, L. Sang, Z. Li, X. Wan, Y. Zhang, Advanced Optical Materials 2023, 11, 2202610. [38] C. Gao, W. W. Wong, Z. Qin, S. C. Lo, E. B. Namdas, H. Dong, W. Hu, Advanced Materials 2021, 33, 2100704. [39] S. E. Seo, H.-S. Choe, H. Cho, H.-i. Kim, J.-H. Kim, O. S. Kwon, Journal of Materials Chemistry C 2022, 10, 4483. [40] B. Zhang, K. D. Richards, B. E. Jones, A. R. Collins, R. Sanders, S. R. Needham, P. Qian, A. Mahadevegowda, C. Ducati, S. W. Botchway, Angewandte Chemie International Edition 2023, 62, e202308602. [41] Z.-Y. Huang, Y.-H. Weng, Y.-C. Lin, W.-C. Chen, ACS Applied Optical Materials 2025, 3, 861. [42] Z.-Y. Huang, Y.-H. Weng, Y.-F. Yang, B.-H. Lin, Y.-C. Lin, W.-C. Chen, ACS Photonics 2023, 10, 4509. [43] M. Uji, T. J. Zähringer, C. Kerzig, N. Yanai, Angewandte Chemie International Edition 2023, 62, e202301506. [44] H. Yang, S. Guo, B. Jin, Y. Luo, X. Li, Polymer Chemistry 2022, 13, 4887. [45] P. Bi, T. Zhang, Y. Guo, J. Wang, X. W. Chua, Z. Chen, W. P. Goh, C. Jiang, E. E. Chia, J. Hou, Nature Communications 2024, 15, 5719. [46] N. Gan, H. Shi, Z. An, W. Huang, Advanced Functional Materials 2018, 28, 1802657. [47] Y. Zhang, L. Gao, X. Zheng, Z. Wang, C. Yang, H. Tang, L. Qu, Y. Li, Y. Zhao, Nature Communications 2021, 12, 2297. [48] J. Ren, Y. Wang, Y. Tian, Z. Liu, X. Xiao, J. Yang, M. Fang, Z. Li, Angewandte Chemie 2021, 133, 12443. [49] L. Ma, Q. Xu, S. Sun, B. Ding, Z. Huang, X. Ma, H. Tian, Angewandte Chemie International Edition 2022, 61, e202115748. [50] J. Xu, S. Tanabe, Journal of Luminescence 2019, 205, 581. [51] Z. Lin, J. Ye, S. Shinohara, Y. Tanaka, R. Yoshioka, C.-Y. Chan, Y.-T. Lee, X. Tang, K. Mitrofanov, K. Wang, Nature Communications 2025, 16, 2686. [52] Z. Lin, R. Kabe, K. Wang, C. Adachi, Nature Communications 2020, 11, 191. [53] Z. Lin, R. Kabe, N. Nishimura, K. Jinnai, C. Adachi, Advanced Materials 2018, 30, 1803713. [54] J. Zhang, W. Wang, Y. Bian, Y. Wang, X. Lu, Z. Guo, C. Sun, Z. Li, X. Zhang, J. Yuan, Advanced Materials 2024, 36, 2404769. [55] D. Liu, Y. Song, H. Wang, T. Wang, Z. Zhou, Z. Liu, W. Lu, T. Wang, Journal of Materials Chemistry C 2024, 12, 10942. [56] S. Zhang, Y. Zhao, Q. Chen, Y. Wang, J. Jiang, Y. Wang, Y. Fu, Q. Liu, Q. Wang, D. He, Microelectron. Eng. 2023, 274, 111982. [57] G.-T. Go, Y. Lee, D.-G. Seo, M. Pei, W. Lee, H. Yang, T.-W. Lee, Adv. Intell. Syst. 2020, 2, 2000012. [58] S. Furber, J. Neural Eng. 2016, 13, 051001. [59] R. Yang, H. M. Huang, X. Guo, Adv. Electron. Mater. 2019, 5, 1900287. [60] F. Sun, Q. Lu, S. Feng, T. Zhang, ACS Nano 2021, 15, 3875. [61] K. Chen, H. Hu, I. Song, H. B. Gobeze, W.-J. Lee, A. Abtahi, K. S. Schanze, J. Mei, Nat. Photonics 2023, 17, 629. [62] H. Han, Z. Xu, K. Guo, Y. Ni, M. Ma, H. Yu, H. Wei, J. Gong, S. Zhang, W. Xu, Adv. Intell. Syst. 2020, 2, 1900176. [63] Y. Yang, Y. He, S. Nie, Y. Shi, Q. Wan, IEEE Electron Device Lett. 2018, 39, 897. [64] C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang, X. Chen, Adv. Mater. 2020, 32, 1902434. [65] F. Zhang, C. Li, Z. Li, L. Dong, J. Zhao, Microsyst. Nanoeng. 2023, 9, 16. [66] R. Khan, N. U. Rehman, S. Iqbal, S. Abdullaev, H. M. Aldosari, ACS Appl. Electron. Mater. 2023, 6, 73. [67] B. H. Mun, B. K. You, S. R. Yang, H. G. Yoo, J. M. Kim, W. I. Park, Y. Yin, M. Byun, Y. S. Jung, K. J. Lee, ACS nano 2015, 9, 4120. [68] H. Han, H. Yu, H. Wei, J. Gong, W. Xu, Small 2019, 15, 1900695. [69] J. Pyo, J.-H. Bae, S. Kim, S. Cho, Materials 2023, 16, 1249. [70] S. Dai et al., Adv. Funct. Mater. 2019, 29, 1903700. [71] C.-H. Cheng, F.-S. Yeh, and A. Chin, Adv. Mater. 2011, 23, 902. [72] S. Dugu, S. P. Pavunny, T. B. Limbu, B. R. Weiner, G. Morell, R. S. Katiyar, APL Mater. 2018, 6. [73] H. Yoo, I. S. Lee, S. Jung, S. M. Rho, B. H. Kang, H. J. Kim, Adv. Mater. 2021, 33, 2006091. [74] S. T. Han, Y. Zhou, V. Roy, Adv. Mater. 2013, 25, 5425. [75] Y. Yang, J. Ouyang, L. Ma, R. H. Tseng, C. W. Chu, Adv. Funct. Mater.2006, 16, 1001. [76] F. H. Abd Nasir, K. L. Woon, Synth. Met. 2024, 117661. [77] J. Ouyang, J. Mater. Chem. C 2015, 3, 7243. [78] L. Yuan, S. Liu, W. Chen, F. Fan, G. Liu, Adv. Electron. Mater. 2021, 7, 2100432. [79] Q. Ling, Y. Song, S. J. Ding, C. Zhu, D. S. Chan, D.-L. Kwong, E.-T. Kang, K.-G. Neoh, 2005. [80] F. Laquai, Y. S. Park, J. J. Kim, and T. Basché, Macromol. Rapid Commun. 2009, 30, 1203. [81] T. Förster, New Compr. Biochem. 1967, 22, 61. [82] S. Xu, R. Chen, C. Zheng, and W. Huang, Adv. Mater. 2016, 28, 9920. [83] X. Yang, G. I. Waterhouse, S. Lu, and J. Yu, Chem. Soc. Rev. 2023, 52, 8005. [84] S. Sem, S. Jenatsch, K. Stavrou, A. Danos, A. P. Monkman, and B. Ruhstaller, J. Mater. Chem. C 2022, 10, 4878. [85] K K. Zhang, T. Zhou, Q. Cao, F. Ge, H. Xu, J. Chu, J. Wang, M. Pei, X. Ban, T. Zhang, Org. Electron. 2023, 112, 106687. [86] Q. Zhou, C. Yang, and Y. Zhao, Chem. 2023, 9, 2446. [87] Y. Liu, G. Zhan, Z.-W. Liu, Z.-Q. Bian, and C.-H. Huang, Chin. Chem. Lett. 2016, 27, 1231. [88] T. Zhang, X. Ma, H. Wu, L. Zhu, Y. Zhao, and H. Tian, Angew. Chem. Int. Ed. 2020, 59, 11206. [89] J. Yang, M. Fang, and Z. Li, Acc. Mater. Res. 2021, 2, 644. [90] B. Ding, X. Ma, and H. Tian, Acc. Mater. Res. 2023, 4, 827. [91] Y. Zhang, Q. Sun, L. Yue, Y. Wang, S. Cui, H. Zhang, S. Xue, W. Yang, Adv. Sci. 2022, 9, 2103402. [92] J. C. Chen, Y. D. Lu, and J. Y. Chen, Adv. Sci. 2023, 10, 2301028. [93] L. D. Wiyanto, B. J. You, L. J. Chiang, D. L. Yang, J. Y. Chen, Adv. Funct. Mater. 2022, 32, 2206040. [94] H. Jin, T. Wang, Z.-R. Gong, C. Long, Y. Dai, Nanoscale 2018, 10, 19310. [95] Z. Yin, Q. Sun, L. Chen, M. Du, Y. Y. Huang, Q. Peng, G. Zhang, D. Zhang, Adv. Opt. Mater. 2023, 11, 2202224. [96] A.-C. Chang, Y.-C. Lin, H.-C. Yen, W.-C. Yang, Y.-F. Yang, and W.-C. Chen, ACS Appl. Electron. Mater. 2022, 4, 1266. [97] Z. Mao, Z. Yang, Z. Fan, E. Ubba, W. Li, Y. Li, J. Zhao, Z. Yang, M. P. Aldred, Z. Chi, Chem. Sci. 2019, 10, 179. [98] A. B. Pun, A. Asadpoordarvish, E. Kumarasamy, M. J. Tayebjee, D. Niesner, D. R. McCamey, S. N. Sanders, L. M. Campos, M. Y. Sfeir, Nat. Chem. 2019, 11, 821. [99] S. N. Sanders, E. Kumarasamy, K. J. Fallon, M. Y. Sfeir, and L. M. Campos, Chem. Sci. 2020, 11, 1079. [100] O. V. Mikhnenko, P. W. Blom, and T.-Q. Nguyen, Energy Environ. Sci. 2015, 8, 1867. [101] R. Malatong, T. Loythaworn, S. Arunlimsawat, P. Chasing, P. Therdkatanyuphong, W. Waengdongbung, T. Sudyoadsuk, V. Promarak, J. Mater. Chem. C 2024, 12, 16025. [102] J. Bai, P. Chen, Y. Lei, Y. Zhang, Q. Zhang, Z. Xiong, F. Li, Org. Electron. 2014, 15, 169. [103] L.-Y. Su, H.-Y. Lin, H.-K. Lin, S.-L. Wang, L.-H. Peng, J. Huang, IEEE Electron Device Lett. 2011, 32, 1245. [104] C.-W. Tseng, D.-C. Huang, Y.-T. Tao, ACS Appl. Mater. Interfaces 2015, 7, 9767. [105] C. C. Hung, Y. C. Chiu, H. C. Wu, C. Lu, C. Bouilhac, I. Otsuka, S. Halila, R. Borsali, S. H. Tung, W. C. Chen, Adv. Funct. Mater. 2017, 27, 1606161. [106] Y. Ran, W. Lu, X. Wang, Z. Qin, X. Qin, G. Lu, Z. Hu, Y. Zhu, L. Bu, G. Lu, Mater. Horiz. 2023, 10, 4438. [107] L. Jiang, C. Xu, X. Wu, X. Zhao, L. Zhang, G. Zhang, X. Wang, L. Qiu, ACS Appl. Mater. Interfaces 2022, 14, 11718. [108] C. Han, X. Han, J. Han, M. He, S. Peng, C. Zhang, X. Liu, J. Gou, J. Wang, Adv. Funct. Mater. 2022, 32, 2113053. [109] S. Zhang, R. Chen, D. Kong, Y. Chen, W. Liu, D. Jiang, W. Zhao, C. Chang, Y. Yang, Y. Liu, D. Wei. Nature Nanotechnol. 2024, 19, 1323. [110] S. Bai, K. Haase, M. Hambsch, S. C. B. Mannsfeld. Adv. Electron. Mater. 2024, 11, 2400307. [111] R. S. Yadav, P. Gupta, A. Holla, K. I. Ali Khan, P. K. Muduli, and D. Bhowmik, ACS Appl. Electron. Mater. 2023, 5, 484. [112] Y. Choi, J.-H. Kim, C. Qian, J. Kang, M. C. Hersam, J.-H. Park, J. H. Cho, ACS Appl. Mater. Interfaces 2019, 12, 4707. [113] C.-C. Shih, W.-Y. Lee, Y.-C. Chiu, H.-W. Hsu, H.-C. Chang, C.-L. Liu, W.-C. Chen, Scientific Reports 2016, 6, 20129. [114] S. Nam, Y.-G. Ko, S. Gyu Hahm, S. Park, J. Seo, H. Lee, H. Kim, M. Ree, Y. Kim, NPG Asia Materials 2013, 5, e33. [115] I. Cho, B. J. Kim, S. W. Ryu, J. H. Cho, J. Cho, Nanotechnology 2014, 25, 505604. [116] S. P. Prakoso, M.-N. Chen, Y.-C. Chiu, Journal of Materials Chemistry C 2022, 10, 13462. [117] J. Zhuang, W.-S. Lo, L. Zhou, Q.-J. Sun, C.-F. Chan, Y. Zhou, S.-T. Han, Y. Yan, W.-T. Wong, K.-L. Wong, Scientific Reports 2015, 5, 14998. [118] S. Xu, L.-L. Wu, X. Wang, H.-Y. Hu, TrAC Trends in Analytical Chemistry 2023, 169, 117356. [119] J. Yang, Z. Chen, M. Fang, Z. Li, Smart Molecules 2024, 2, e20240034. [120] K. Jinnai, R. Kabe, Z. Lin, C. Adachi, Nature Materials 2022, 21, 338. [121] Y. Zhao, B. Ding, Z. Huang, X. Ma, Chemical Science 2022, 13, 8412. [122] G. Huang, Z. Deng, J. Pang, J. Li, S. Ni, J. A. Li, C. Zhou, H. Li, B. Xu, L. Dang, Advanced Optical Materials 2021, 9, 2101337. [123] L. Xiao, Z. Wang, C. Zhang, X. Xie, H. Ma, Q. Peng, Z. An, X. Wang, Z. Shuai, M. Xiao, The Journal of Physical Chemistry Letters 2020, 11, 3582. [124] S. Wu, Z. Pan, R. Chen, X. Liu, Springer, 2017. [125] Y. Li, M. Gecevicius, J. Qiu, Chemical Society Reviews 2016, 45, 2090. [126] Y. S. Lin, Y. C. Lin, W. C. Yang, G. S. Li, E. Ercan, C. C. Hung, W. C. Chien, W. C. Chen, Advanced Electronic Materials 2022, 8, 2100798. [127] Y. Song, S. Lv, X. Liu, X. Li, S. Wang, H. Wei, D. Li, Y. Xiao, Q. Meng, Chemical Communications 2014, 50, 15239. [128] W. Qiu, X. Cai, M. Li, Z. Chen, L. Wang, W. Xie, K. Liu, M. Liu, S.-J. Su, The Journal of Physical Chemistry Letters 2021, 12, 4600. [129] Y. Nishikitani, H. Takeuchi, H. Nishide, S. Uchida, S. Yazaki, S. Nishimura, Journal of Applied Physics 2015, 118. [130] W. Li, Z. Li, C. Si, M. Y. Wong, K. Jinnai, A. K. Gupta, R. Kabe, C. Adachi, W. Huang, E. Zysman‐Colman, Advanced Materials 2020, 32, 2003911. [131] P. Alam, N. L. Leung, J. Liu, T. S. Cheung, X. Zhang, Z. He, R. T. Kwok, J. W. Lam, H. H. Sung, I. D. Williams, Advanced Materials 2020, 32, 2001026. [132] B. Tang, J. Zhao, J.-F. Xu, X. Zhang, Chemical Science 2020, 11, 1192. [133] H. Gao, G. Wang, T. Wang, Z. Ye, Q. Yan, Q. Chong, C. Y. Chan, B. Wang, K. Zhang, Advanced Science 2025, 12, 2416853. [134] C. Zheng, Y. Liao, S. T. Han, Y. Zhou, Advanced Electronic Materials 2020, 6, 2000641. [135] J. Yang, Y. Li, S. Duhm, J. Tang, S. Kera, N. Ueno, Advanced Materials Interfaces 2014, 1, 1300128. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98534 | - |
| dc.description.abstract | 本研究以有機場效電晶體為基礎,探討純有機長效室溫磷光與有機長延遲發光材料於浮閘式光記憶體與突觸元件中的應用潛力。有機場效電晶體具有結構可調性、可溶液製程與柔性基板相容等優勢,為新世代非揮發性光控記憶元件的理想平台。然而,傳統記憶材料多受限於瞬時激發與快速復合機制,難以達到長時間記憶保持與低功耗光寫入功能,因此本研究嘗試導入具延遲激發態特性的發光材料,以突破現有技術瓶頸。
於第二章中,我們選用兩種無添加金屬之室溫磷光分子,3,3',4,4'-二苯基磺醯四羧酸二酐與 3,3′,4,4′-苯酮四甲酸二酐,分別與聚苯乙烯共混製成浮閘介電層,並搭配p型半導體五苯製備成三端浮閘式光記憶元件。此結構展現良好的光輔助寫入行為,在265奈米紫外光與正閘極電壓條件下可有效儲存電子,並展現高達106的開關電流比與超過10,000秒之穩定性。此外,此元件同時具備優異的光突觸可塑性,包括成對脈衝促進、脈衝數目依賴性可塑性、脈衝時序依賴性可塑性、脈衝頻率依賴性可塑性與脈衝強度依賴性可塑性等突觸行為,進一步模擬類神經網路辨識手寫數字,顯示其於人工感知與學習系統中之應用潛力。 於第三章中,我們進一步探討以聚甲基丙烯酸甲酯為主體基質、並摻入四苯基聯苯胺、雙(1-萘基)-雙(苯基)聯苯胺或2,7-雙(1-萘基苯胺)-9,9-二甲基芴作為客體之有機長延遲發光系統。藉由調控客體濃度與能階設計,達成可見長效餘暉與顯著的電荷儲存效應。結果顯示,5 重量百分比的2,7-雙(1-萘基苯胺)-9,9-二甲基芴元件展現最佳表現,開關電流比高達4.9 × 105,並具備10,000秒以上之穩定性。然而,其載子狀態高度穩定亦造成抹除效率下降,顯示有機長延遲發光機制在提供長效儲存優勢的同時,也需解決其電性可逆性之挑戰。 綜合而言,本研究首次系統性驗證純有機長效室溫磷光與有機長延遲發光材料於有機場效電晶體光記憶元件中的應用潛力,成功結合激子工程與元件架構,實現高效率、可光寫入且具環境穩定性之非揮發性記憶系統。此結果為未來開發有機記憶技術提供具體的材料選擇與設計策略。 | zh_TW |
| dc.description.abstract | This thesis explores the integration of purely organic room-temperature phosphorescent (RTP) and organic long-persistent luminescent (OLPL) materials into organic field-effect transistor (OFET) platforms for high-performance floating-gate photomemory and synaptic devices. Owing to their structural tunability, solution-processability, and compatibility with flexible substrates, OFETs have emerged as promising candidates for non-volatile memory technologies. However, conventional OFET memory architectures often face limitations in data retention and optical programming efficiency due to the rapid recombination dynamics of typical charge storage materials. To address this, we introduce metal-free organic luminophores with long-lived excited states to enable energy-efficient and optically controllable memory operations.
In Chapter 2, we employ two metal-free RTP molecules, 3,3′, 4,4′-Diphenyl sulfone tetracarboxylic dianhydride and 3,3′, 4,4′-Benzophenone tetracarboxylic dianhydride, which are blended with polystyrene to form the floating-gate dielectric layer. Integrated with the p-type semiconductor pentacene, the resulting OFET memory devices demonstrated robust photo-assisted electrical writing under 265 nm UV light, achieving a high ION/IOFF of ~106 and stable data retention exceeding 10,000 seconds. These RTP-based devices also exhibited excellent synaptic plasticity, including paired-pulse facilitation, pike-number-dependent plasticity, spike-timing-dependent plasticity, spike-rate-dependent plasticity, and spike-intensity-dependent plasticity, and were further validated in a neural network simulation for handwritten digit recognition, highlighting their potential for neuromorphic applications. Chapter 3 extends the study to OLPL-based systems using poly(methyl methacrylate) as the host matrix and N,N, N′,N′-Tetraphenylbenzidine, N, N′-Bis(naphthalen-1-yl)-N, N'-bis(phenyl)-benzidine, or 2,7-Bis(N-(1-naphthyl)aniline)-9,9-dimethylfluorene (DMFL-NPB) as guest molecules. By optimizing energy level design and guest concentration, we achieved visible persistent luminescence and stable charge trapping behavior. Among all systems, the device incorporating 5 wt% DMFL-NPB showed the most pronounced performance, an ION/IOFF ratio of 4.9 × 105, and excellent retention over 10,000 seconds. However, due to the strong stabilization of trapped charges, the erase operation remained incomplete, revealing a trade-off between long-term retention and rewritability. In summary, this work presents a systematic demonstration of RTP and OLPL materials in OFET-based memory architectures, offering new strategies for exciton engineering and optoelectronic device design. These findings establish a pathway toward the development of purely organic, light-controllable, and flexible memory technologies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:29:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:29:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF TABLES ix LIST OF FIGURES x Chapter 1 Introduction 1 1.1 Introduction of Organic Field-Effect Transistors (OFETs) 1 1.1.1 Working Principles of OFETs 3 1.1.2 Working Mechanism of Transistor Memory Devices 4 1.1.3 Operational Principles of Synaptic Transistors 6 1.1.4 Development of Phototransistor Memory Materials 8 1.2 Advancing Charge Trapping Materials for Transistor Memory Devices 10 1.2.1 Polymer Electret 10 1.2.2 Ferroelectric 12 1.2.3 Floating Gate 14 1.3 Introduction to Organic Delayed Exciton Emission 15 1.3.1 Thermally Activated Delayed Fluorescence (TADF) 17 1.3.2 Triplet-Triplet Upconversion Annihilation (TTA-UC) 19 1.3.3 Room-Temperature phosphorescent (RTP) 22 1.3.4 Organic Long Persistent Luminescence (OLPL) 24 1.4 Research Objectives 27 1.5 Tables and Figures 30 Chapter 2 Application of Organic Room-Temperature Phosphorescent Materials in High-Efficiency Photomemory and Synaptic Phototransistors 37 2.1 Introduction 37 2.2 Experimental Section 43 2.2.1 Materials 43 2.2.2 Fabrication of the Devices 43 2.2.3 Characterization 44 2.2.4 Simulation of Image Recognition System 45 2.3 Results and Discussion 45 2.3.1 Synthesis and Characterization of DPS-C and BTDA-C 45 2.3.2 Device Structure and Morphology Analysis 46 2.3.3 Optical Analysis of the RTP Materials 48 2.3.4 Optical Analysis of the RTP Layers Stacked with the Semiconductor 50 2.3.5 Device Performance of the Transistor Memory 52 2.3.6 Synaptic Characteristics of RTP-Based Device 57 2.3.7 Application of Artificial Photosynapses for Image Recognition System 59 2.4 Summary 60 2.5 Tables and Figures 62 Chapter 3 Organic Long Persistent Luminescence Materials Based on Host–Guest Systems for Phototransistor Memory 89 3.1 Introduction 89 3.2 Experimental Section 92 3.2.1 Materials 92 3.2.2 Fabrication of the Devices 92 3.2.3 Characterization 93 3.3 Results and Discussions 93 3.3.1 Device Structure and Morphology Characterization 93 3.3.2 Optical Properties 94 3.3.3 Characterization of Phototransistor Memory 96 3.3.4 Operating Mechanism of the OLPL Phototransistor Memory Device 99 3.4 Summary 100 3.5 Tables and Figures 102 Chapter 4 Conclusion and Future work 115 References 117 | - |
| dc.language.iso | en | - |
| dc.subject | 影像辨識系統 | zh_TW |
| dc.subject | 場效電晶體 | zh_TW |
| dc.subject | 有機長餘輝發光 | zh_TW |
| dc.subject | 室溫磷光 | zh_TW |
| dc.subject | 光突觸 | zh_TW |
| dc.subject | photosynapses | en |
| dc.subject | room-temperature phosphorescence | en |
| dc.subject | organic long-persistent luminescent | en |
| dc.subject | image recognition systems | en |
| dc.subject | field-effect transistors | en |
| dc.title | 有機長效及室溫磷光材料開發與浮閘式光電晶體元件應用 | zh_TW |
| dc.title | Development of the Organic Long-Persistent and Room-Temperature Phosphorescent Materials for Floating-Gate Phototransistor Devices | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉振良;林彥丞;羅承慈 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Liang Liu;Yan-Cheng Lin;Chen-Tsyr Lo | en |
| dc.subject.keyword | 場效電晶體,影像辨識系統,光突觸,室溫磷光,有機長餘輝發光, | zh_TW |
| dc.subject.keyword | field-effect transistors,image recognition systems,photosynapses,room-temperature phosphorescence,organic long-persistent luminescent, | en |
| dc.relation.page | 126 | - |
| dc.identifier.doi | 10.6342/NTU202503178 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-08-15 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 8.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
