Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物醫學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98517
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈原民zh_TW
dc.contributor.advisorYuan-Min Shenen
dc.contributor.author陳佑慎zh_TW
dc.contributor.authorYu-Shen Chenen
dc.date.accessioned2025-08-14T16:25:19Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation安寶貞、張東柱。2000。近年來(1997冬季以來)本省馬鈴薯與番茄晚疫病大發生之病因探討。植物疫情與策略:115–126。
曾德賜。2015。農藥藥理與應用: 殺菌劑。國立中興大學.
黃順源。2016。建立 SSR 分子標誌及分析臺灣晚疫病菌族群遺傳動態. 國立臺灣大學植物病理與微生物學系學位論文。2016。1–135。
黃晉興。2021。卵菌綱植物病原菌的介紹。農業試驗所技術服務季刊 126:14–18。
蔡志濃、劉瑞芬、安寶貞、林筑蘋、蔡惠玲。2019。台灣馬鈴薯與番茄晚疫病之發生現況與探討。植物醫學 61 (4): 1–9。
戴肇鋒、蘇秋竹、張瑞璋。2020。殺菌劑抗藥性行動委員會 (Fungicide Resistance Action Committee) 簡介與臺灣殺菌劑抗藥性研究進展。臺灣農藥科學 37–54。
戴肇鋒、張組程。2024。卵菌類 (Oomycetes) 植物病原菌之殺菌劑感受性探討。臺灣農藥科學 (7): 57–71。
Abreha KB, Lankinen Å, Masini L, Hydbom S, Andreasson E. 2018. Late blight resistance screening of major wild Swedish Solanum Species: S. dulcamara, S. nigrum, and S. physalifolium. Phytopathology 108 (7): 847–857.
Abuley IK, Lynott JS, Hansen JG, Cooke DE, Lees AK. 2023. The EU43 genotype of Phytophthora infestans displays resistance to mandipropamid. Plant Pathology 72 (7): 1305–1313.
Adler NE, Erselius LJ, Chacon MG, Flier WG, Ordonez ME, Kroon LP, Forbes GA. 2004. Genetic diversity of Phytophthora infestans sensu lato in Ecuador provides new insight into the origin of this important plant pathogen. Phytopathology 94: 154–162.
Agrios GN. 2005. Plant pathology. Elsevier.
Aoki Y, Suzuki S. 2025. Fungicide resistance dynamics: knowledge from downy mildew management in Japanese vineyards. Agriculture 15 (7) : 714.
Anke T, Oberwinkler F, Steglich W, Schramm G. 1977. Strobilurins–New antifungal antibiotics from the basidiomycete Strobilurus tenacellus (Pers. ex Fr.) Sing. The Journal of Antibiotics 30:806–810.
Ann PJ, Tsai JN, Wang TC, Chen CH, Lin MJ, Ko WH. 2010. Reevaluation of the report of the A2 mating type of Phytophthora infestans on tomato in Taiwan. Botanical Studies 51: 203–207.
Avila-Adame C, Gomez-Alpizar L, Zismann V, Jones KM, Buell CR, Ristaino JB. 2006. Mitochondrial genome sequences and molecular evolution of the Irish potato famine pathogen, Phytophthora infestans. Current Genetics 49:39–46.
Babarinde S, Burlakoti RR, Peters RD, Al-Mughrabi K, Novinscak A, Sapkota S, Prithiviraj B. 2024. Genetic structure and population diversity of Phytophthora infestans strains in Pacific western Canada. Applied Microbiology and Biotechnology 108(1): 237-259.
Bartnicki-Garci S. 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Review of Microbiology 22: 87–108.
Beckerman J, Palmer C, Tedford E, Ypema H. 2023. Fifty years of fungicide development, deployment, and future use. Phytopathology 113 (4): 694–706.
Bhat RG, McBlain BA, Schmitthenner AF. 1993. The inheritance of resistance to metalaxyl and to fluorophenylalanine in matings of homothallic Phytophthora sojae. Mycological Research 97 (7): 865–870.
Bosmans S. 2009. On the evolution of pesticide resistance in Phytophthora infestans: an experimental evolution approach. Wageningen University and Research.
Blum M, Boehler M, Randall E, Young V, Csukai M, Kraus S, Moulin F, Scalliet G, Avrova AO,Whisson SC, Fonné-Pfister R. 2010a. Mandipropamid targets the cellulose synthase–like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen Phytophthora infestans. Molecular Plant Pathology 11:227–243.
Blum M, Waldner M, Gisi U. 2010b. A single point mutation in the novel PvCesA3 gene confers resistance to the carboxylic acid amide fungicide mandipropamid in Plasmopara viticola. Fungal Genetics and Biology 47:499–510.
Blum M, Waldner M, Olaya G, Cohen Y, Gisi U, Sierotzki H. 2011. Resistance mechanism to carboxylic acid amide (CAA) fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis. Pest Managament Science 67: 1211–1214.
Blum M, Gamper HA, Waldner M, Sierotzki H, Gisi U. 2012. The cellulose synthase 3 (CesA3) gene of oomycetes: structure phylogeny and influence on sensitivity to carboxylic acid amide (CAA) fungicides. Fungal Bioloy 116:529–542.
Blum M, Gisi U. 2012. Insights into the molecular mechanism of tolerance to carboxylic acid amide (CAA) fungicides in Pythium aphanid–ermatum. Pest Management Science 68 (8): 1171–1183.
Brasseur G, Saribas AS, Daldal F. 1996. A compilation of mutations located in the cytochrome b subunit of the bacterial and mitochondrial bc1 complex. Biochimica et Biophysica Acta 1275: 61–69.
Brent KJ, Hollomon DW. 2007. Fungicide resistance in crop pathogens. How can it be managed 2nd revised edition. In FRAC Monograph;No. 1;CropLife International: Brussels, Belgium.
Brent KJ, Hollomon DW. 1995. Fungicide resistance in crop pathogens: How can it be managed? CropLife International: Brussels, Belgium.
Bulone V, Chanzy H, Gay L, Girard V, Fevre M. 1992. Characterization of chitin and chitin synthase from the cellulosic cell wall fungus Saprolegnia monoia. Experimental Mycology 16 (1): 8–21.
Cai M, Zhang C, Wang W, Peng Q, Song X, Tyler BM, Liu X. 2021. Stepwise accumulation of mutations in CesA3 in Phytophthora sojae results in increasing resistance to CAA fungicides. Evolutionary Applications 14 (4): 996–1008.
Campbell SE, Brannen PM, Scherm H, Brewer MT. 2020. Fungicide sensitivity survey of Plasmopara viticola populations in Georgia vineyards. Plant Health Progress 21 (4): 256–261.
Carter DA, Archer SA, Buck KW, Shaw DS, Shattock RC. 1990. Restriction fragment length polymorphisms of mitochondrial DNA of Phytophthora infestans. Mycological Research 94: 1123–1128.
Chen CH, Wang TC, Black L, Shen ZM, Perez F, Deahl K. 2009.Phenotypic and genotypic changes in the Phytophthora infestans population in Taiwan–1991 to 2006. Phytopathology 157: 248–255.
Chen L, Zhu S, Lu X, Pang Z, Cai M, Liu X .2012. Assessing the risk that Phytophthora melonis can develop a point mutation (V1109L) in CesA3 conferring resistance to carboxylic acid amide fungicides. PLOS One 7(7): e42069.
Chen F, Zhou Q, Xi J, Li DL, Schnabel G, Zhan J. 2018. Analysis of RPA190 revealed multiple positively selected mutations associated with metalaxyl resistance in Phytophthora infestans. Pest Management Science 74 (8): 1916–1924.
Cheng S, Tao K, Lv X, Lai Z, Lv Y, Wang Z, Chen Q. 2024. The Discovery of Oxathiapiprolin as a potential agent for the control of litchi downy blight caused by Peronophythora litchii and the study of its’ mechanism of action. Journal of Agricultural and Food Chemistry 73(1): 329-341.
Cherrad S, Gillet B, Dellinger J, Bellaton L, Roux P, Hernandez C, Hughes S. 2023. New insights from short and long reads sequencing to explore cytochrome b variants in Plasmopara viticola populations collected from vineyards and related to resistance to complex III inhibitors. PLOS One 18 (1) : e0268385.
Childers R, Danies G, Myers K, Fei Z, Small IM, Fry WE. 2015. Acquired resistance to mefenoxam in sensitive isolates of Phytophthora infestans. Phytopathology 105 (3): 342–349.
Choi JG, Hong SY, Kessel GJ, Cooke DE, Vossen JH, Cho JH, Cho KS. 2020. Genotypic and phenotypic characterization of Phytophthora infestans in South Korea during 2009–2016 reveals clonal reproduction and absence of EU_13_A2 genotype. Plant Pathology 69 (5): 932–943.
Cohen Y, Gisi U. 2007. Differential activity of carboxylic acid amide fungicides against various developmental stages of Phytophthora infestans. Phytopathology 97: 1274–1283.
Cohen Y, Rubin AE, Galperin M. 2021. Effective control of two genotypes of Phytophthora infestans in the field by three oxathiapiprolin fungicidal mixtures. PLOS One 16(10): e0258280.
Cohen Y, Weitman M. 2023. Mobility of oxathiapiprolin in and between tomato plants. Pest Management Science 79 (3): 1102-1112.
Cooke DEL, Lees AK. 2004. Markers, old and new, for examining Phytophthora infestans diversity. Plant Pathology 53 (6): 692–704.
Corkley I, Fraaije B, Hawkins N. 2022. Fungicide resistance management: Maximizing the effective life of plant protection products. Plant Pathology 71 (1): 150–169.
Cosseboom SD, Agarwal C,Hu M. 2023. CRISPR–enabled investigation of fitness costs associated with the E198A mutation in β–tubulin of Colletotrichum siamense. Frontiers in Plant Science 14: 1278133.
Cousens SH. 1960. Regional death rates in Ireland during the Great Famine, from 1846 to 1851. Population Studies 14 (1): 55–74.
Crute IR, Harrison JM. 1988. Studies on the inheritance of resistance to metalaxyl in Bremia lactucae and on the stability and fitness of field isolates. Plant Pathology, 37 (2): 231–250.
Daayf F, Platt HW. 2003. US–8 and US-11 genotypes of Phytophthora infestans from potato and tomato respond differently to commercial fungicides. American Journal of Potato Research 80: 329–334.
Dai T, Yuan K, Shen J, Miao J, Liu X. 2024. Ametoctradin resistance risk and its resistance–related point mutation in PsCytb of Phytophthora sojae confirmed using ectopic overexpression. Pesticide Biochemistry and Physiology 198: 105747.
Davidse LC, Looijen D, Turkensteen LJ, Van der Wal D. 1981. Occurrence of metalaxyl-resistant strains of Phytophthora infestans in Dutch potato fields. Netherlands Journal of Plant Pathology 87: 65–68.
Davidse LC, Hofman AE, Velthuis GC. 1983. Specific interference of metalaxyl with endogenous RNA polymerase activity in isolated nuclei from Phytophthora megasperma f. sp. medicaginis. Experimental Mycology 7 (4): 344–361.
Davidse LC, Gerritsma OCM, Ideler J, Pie K, Velthuis GCM. 1988. Antifungal modes of action of metalaxyl, cyprofuram, benalaxyl and oxadixyl in phenylamide–sensitive and phenylamide-resistant strains of Phytophthora megasperma f. sp. medicaginis and Phytophthora infestans. Crop Protection 7: 347–355.
Davidse LC. 1990. Biochemical basis of resistance to phenylamide fungicides. In: Managing resistance to agrochemicals, vol 421. American Chemical Society: 215–223.
Deahl KL, Cooke LR, Black LL, Wang TC, Perez FM, Moravec BC, Quinn M, Jones RW. 2002.Population changes in Phytophthora infestans in Taiwan associated with the appearance of resistance to metalaxyl. Pest Managament Science 58: 951–958.
Deahl KL, Jones RW, Black LL, Wang TC, Cooke LR. 2008. First report of the A2 mating type of Phytophthora infestans on tomato crops in Taiwan, Republic of China. Plant Disease 92 (6): 978–978.
Degli–Esposti M, De Fries S, Crimi M, Ghelli A, Patarnello T, Meyer A. 1993. Mitochondrial cytochrome b: evolution and structure of the protein. Biochimal Biophys de Acta 1143:243–271.
Derpmann J, Leonard S, Böhm J, Mehl A. 2025. Characterization of CA.A-, OSBPI-and double resistant field isolates of Phytophthora infestans and their impact on late blight Control in potatoes. Journal of the European Association for Potato Research.
Di Rago JP, Coppee JY, Colson AM. 1989. Molecular basis for resistance to myxothiazol, mucidin (strobilurin A), and stigmatellin: cytochrome b inhibitors acting at the center o of the mitochondrial ubiquinol–cytochrome c reductase in Saccharomyces cerevisiae. Journal of Biological Chemistry 264 (24): 14543–14548.
Diriwachter G, Sozzi D, Ney C, StaubT. 1987. Cross–resistance in Phytophthora infestans and Plasmopara viticola against different phenylamides and unrelated fungicides. Crop Protection 6: 250–255.
Dowley LJ, O’Sullivan E. 1981. Metalaxyl resistant strains of Phytophthora infestans (Mont. de Bary) in Ireland. Potato Research 24: 417–421.
Drygin D, Rice WG, Grummt I. 2010. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annual Review of Pharmacology and Toxicology 50 (1): 131–156.
Duan YB, Liu SM, Ge CY, Feng XJ, Chen CJ, Zhou MG. 2012. In vitro inhibition of Sclerotinia sclerotiorum by mixtures of azoxystrobin, SHAM, andthiram. Pesticide Biochemistry and Physiology 103 (2): 101–107.
Dubuis PH, Waldner M, Boehler M, Fonné–Pfister R, Sierotzki H, Gisi U. 2008. Molecular approaches for evaluating resistance mechanisms in CAA fungicides. Modern Fungicides and Antifungal Compounds V, BCPC, Alton (2008): 79-84.
Ericsson L. 2024. Fungicide resistance in Phytophthora infestans. Resistance to mandipropamid and oxathiapiprolin in Swedish field isolates. Swedish University of Agricultural Sciences.1–48.
Estep LK, Torriani SF, Zala M, Anderson NP, Flowers MD, McDonald BA, Brunner PC. 2015. Emergence and early evolution of fungicide resistance in North American populations of Zymoseptoria tritici. Plant Pathology 64 (4): 961–971.
Fabritius AL, Shattock RC, Judelson HS. 1997. Genetic analysis of metalaxyl insensitivity loci in Phytophthora infestans using linked DNA markers. Phytopathology 87 (10): 1034–1040.
Fall ML, Tremblay DM, Gobeil–Richard M, Couillard J, Rocheleau H, Van der Heyden H, Lévesque CA, Beaulieu C, Carisse O. 2015. Infection efficiency of four Phytophthora infestans clonal lineages and DNA–based quantification of sporangia. PLOS One 10 (8): e0136312.
Fehr M, Wolf A, StammLer G. 2016. Binding of the respiratory chain inhibitor ametoctradin to the mitochondrial bc 1 complex. Pest Management Science 72 (3): 591–602.
Fernández–Ortuño D, Toré JA, De Vicente A, Pérez–García, A. 2008. Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. International Microbiology 11 (1): 1.
Fisher DJ, Hayes AL. 1984. Studies of mechanisms of metalaxyl fungitoxicity and resistance to metalaxyl. Crop Protection 3 (2): 177–185.
Fontaine S, Remuson F, Caddoux L, Barrès B. 2019. Investigation of the sensitivity of Plasmopara viticola to amisulbrom and ametoctradin in French vineyards using bioassays and molecular tools. Pest Management Science 75 (8): 2115–2123.
Forbes GA, Goodwin SB, Drenth A, Oyarzun P, Ordoñez ME, Fry WE. 1998. A Global Marker Database for Phytophthora infestans. Plant Disease 82: 811–818.
Förch M, Kessel G, Spits H, Hasunuma N .2007. Baseline sensitivity of Phytophthora infestans lifecycle components to NC–224 20SC (amisulbrom). Tenth Workshop of an European network for development of an integrated control strategy of potato late blight. Bologna, Italy,PPO–Special Report no. 12: 337–344.
Fry W. 2008. Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology 9 (3): 385–402.
Fry WE, Grünwald NJ, Cooke DEL, McLeod A, Forbes GA, Cao K. 2009. Population genetics and population diversity of Phytophthora infestans. In Oomycete Genetics and Genomics: Diversity, Interactions, and Research Tools (edited by Lamour, K. and Kamoun, S.), John Wiley and Sons, Inc, Hoboken, NY, USA doi: 10.1002/9780470475898.
Fungicide Resistance Action Committee. 2014. Relationship between QoIs, QoSIs and QiI Fungicides. FRAC.
http://www.frac.info/docs/default–source/publications/qoi–qosi–qii–relationship.pdf
Fungicide Resistance Action Committee. 2024. FRAC Code List©* 2024: Fungal control agents sorted by cross–resistance pattern and mode of action. FRAC. https://www.frac.info/media/kufnaceb/frac–code–list–2024.pdf
Fungicide Resistance Action Committee. 2025a. CAA fungicides. FRAC. https://www.frac.info/frac–teams/working–groups/caa–fungicides/
Fungicide Resistance Action Committee. 2025b. OSBP fungicides. FRAC. https://www.frac.info/frac–teams/working–groups/osbpi–fungicides/
Furuya S, Suzuk, S, Kobayashi H, Saito S, Takayanagi T. 2009. Rapid method for detecting resistance to a QoI fungicide in Plasmopara viticola populations. Pest Management Science 65 (8): 840–843.
Galtier N, Depaulis F, Barton NH. 2000. Detecting bottlenecks and selective sweeps from DNA sequence polymorphism. Genetics 155: 981–987.
Gao X, Hu S, Liu Z, Zhu H, Yang J, Han Q, Fu Y, Miao J, Gu B, Liu X. 2022. Analysis of resistance risk and resistance‐related point mutations in cyt b of qioi fungicide ametoctradin in Phytophthora litchii. Pest Management Science 78 (7): 2921–2930.
Gao X, Yuan K, Li X, Liao S, Peng Q, Miao J, Liu X. 2023. Resistance risk and resistance–related point mutations in target protein Cyt b of the quinone inside inhibitor amisulbrom in Phytophthora litchii. Journal of Agricultural and Food Chemistry 71 (17) : 6552–6560.
Garry G, Forbes GA, Salas A, Santa Cruz M, Perez WG, Nelson RJ. 2005. Genetic diversity and host differentiation among isolates of Phytophthora infestans from cultivated potato and wild solanaceous hosts in Peru. Plant Pathology 54 (6): 740–748.
Gaulin E, Bottin A, Dumas B. 2010. Sterol biosynthesis in oomycete pathogens. Plant signaling & behavior 5 (3): 258–260.
Geier BM, Schägger H, Brandt U, Colson AM, Von Jagow G. 1992. Point mutation in cytochrome b of yeast ubihydroquinone: cytochrome‐c oxidoreductase causing myxothiazol resistance and facilitated dissociation of the iron‐sulfur subunit. European Journal of Biochemistry 208 (2): 375–380.
Giresse X, Ahmed S, Richard‐Cervera S, Delmotte F. 2010. Development of new oomycete taxon‐specific mitochondrial cytochrome b region primers for use in phylogenetic and phylogeographic studies. Journal of Phytopathology 158 (4): 321–327.
Gisi U, Hermann D, Ohl L, Steden C. 1997. Sensitivity profiles of Mycosphaerella graminicola and Phytophthora infestans populations to different classes of fungicides. Pesticide Science 51: 290–298.
Gisi U, Sierotzki H. 2008. Fungicide modes of action and resistance in downy mildews. European Journal of Plant Pathology 122:157–167.
Gisi U, Waldner M, Kraus N, Dubuis PH, Sierotzki H .2007. Inheritance of resistance to carboxylic acid amide (CAA) fungicides in Plasmopara viticola . Plant Pathology 56:199–208.
Gisi U, Walder F, Resheat–Eini Z, Edel D, Sierotzki H. 2011.Change of genotype, sensitivity and aggressiveness in Phytophthora infestans isolates collected in European countries in 1997, 2006 and 2007. Phytopatholoy 159: 223–232.
Gold RE, Schiffer H, Speakman J, Stammler G, Klappach K, Brix HD, Schlehuber. 2011. Initium – a new innovative fungicide for the control of Oomycetes in speciality crops. In:Dehne HW, Deising HB, Gisi U, Kuck K–H, Russell P, Lyr H (eds) Modern fungicides and antifungal compounds VI. DPG Spectrum Phytomedizin, Braunschweig: 55–61.
González–Tobón J, Childers R, Olave C, Regnier M, Rodríguez–Jaramillo A, Fry W, Danies G. 2020. Is the phenomenon of mefenoxam–acquired resistance in Phytophthora infestans universal? Plant Disease 104 (1): 211–221.
Goodwin SB, Drenth A, Fry WE. 1992. Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans. Current Genetics 22: 107–115.
Goodwin SB, Schneider RE, Fry WE. 1995. Use of cellulose-acetate electrophoresis for rapid identification of allozyme genotypes of Phytophthora infestans. Phytophthora infestans: The cause of late blight of potato. Boole Press, Dublin. pp. 50–55.
Goodwin SB, Sujkowski LS, Fry WE. 1996. Widespread distribution and probable origin of resistance to Metalaxyl in clonal genotypes. Phytopathology 86: 793–800.
Gotoh K, Akino S, Maeda A, Kondo N, Naito S, Kato M. 2005. Characterization of some Asian isolates of Phytophthora infestans. Plant Pathology 54: 733–739.
Gray MA, Nguyen KA, Hao W, Belisle RJ, Förster H, Adaskaveg JE. 2020. Mobility of oxathiapiprolin and mefenoxam in citrus seedlings after root application and implications for managing Phytophthora root rot. Plant Disease 104 (12): 3159–3165.
Grenville-Briggs LJ, Anderson VL, Fugelstad J, Avrova AO, Bouzenzana J,Williams A, Wawra S, Whisson SC, Birch PR, Bulone V, van West P. 2008. Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. Plant Cell 20: 720–738.
Griffith GW, Shaw DS. 1998. Polymorphisms in Phytophthora infestans: Four mitochondrial haplotypes are detected after PCR amplification of DNA from pure cultures or from host lesions. Applied and Environmental Microbiology 64: 4007–4014.
Grönberg L, Andersson B, Yuen J. 2012. Can weed hosts increase aggressiveness of Phytophthora infestans on potato?. Phytopathology 102 (4): 429–433.
Grünwald NJ, Martin FN, Larsen MM, Sullivan CM, Press CM, Coffey MD, Hansen EM, Parke JL. 2011. Phytophthora–ID. org: a sequence–based Phytophthora identification tool. Plant Disease 95 (3): 337–342.
Guha-Roy S, Dey T, Cooke DE, Cooke LR. 2021. The dynamics of Phytophthora infestans populations in the major potato‐growing regions of Asia–A review. Plant Pathology 70 (5): 1015–1031.
Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AMV, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JIB, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N, Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J, Grunwald NJ, Horn K, Horner NR, Hu CH, Huitema E, Jeong DH, Jones AME, Jones JDG, Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, MacLean D, Chibucos MC, McDonald H, McWalters J, Meijer HJG, Morgan W, Morris PF, Munro CA, O’Neill K, Ospina-Giraldo M, Pinzon A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadanandom A, Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwessinger B, Seyer L, Sharpe T, Silvar C, Song J, Studholme DJ, Sykes S, Thines M, van de Vondervoort PJI, Phuntumart V, Wawra S, Weide R, Win J, Young C, Zhou S, Fry W, Meyers BC, van West P, Ristaino J, Govers F, Birch PRJ, Whisson SC, Judelson HS, Nusbaum C. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461: 393–398.
Haack SE, Ivors KL, Holmes GJ, Förster H, Adaskaveg JE. 2018. Natamycin, a new biofungicide for managing crown rot of strawberry caused by QoI–resistant Colletotrichum acutatum. Plant Disease 102 (9): 1687–1695.
Hartmann FE, Vonlanthen T, Singh NK, McDonald MC, Milgate A, Croll D. 2021. The complex genomic basis of rapid convergent adaptation to pesticides across continents in a fungal plant pathogen. Molecular Ecology 30 (21): 5390–5405.
Hawkins NJ, Fraaije BA. 2018. Fitness penalties in the evolution of fungicide resistance. Annual Review of Phytopathology 56 (1): 339–360.
Helbert W, Sugiyama J, Ishihara M., Yamanaka S. 1997. Characterization of native crystalline cellulose in the cell walls of Oomycota. Journal of Biotechnology 57 (1-3): 29–37.
Hermann D, Gisi U. 2012. Fungicide resistance in oomycetes with special reference to Phytophthora infestans and phenylamides. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management. CAB International, Wallingford: 133–140.
Hu CH, Perez FG, Donahoo R, McLeod A, Myers K, Ivors K, Secor G, Roberts PD, Deahl KL, Fry E, Ristaino JB. 2012. Recent genotypes of Phytophthora infestans in the eastern United States reveal clonal populations and reappearance of mefenoxam sensitivity. Plant Disease 96 (9): 1323–1330.
Judelson HS. 1997. The Genetics and Biology of Phytophthora infestans: Modern Approaches to a Historical Challenge. Fungal Genetics and Biology 22 (2): 65–76.
Judelson HS, Roberts S. 1999. Multiple loci determining insensitivity to phenylamide fungicides in Phytophthora infestans. Phytopathology 89 (9): 754–760.
Judelson HS, Senthil G. 2006. Investigating the role of ABC transporters in multifungicide insensitivity in Phytophthora infestans. Molecular Plant Pathology 7 (1): 17–29.
Jyan MH, Liou RF, Ann PJ, Tsai JN, Hsih SD, Chang TT. 2004. Recent occurrence of Phytophthora infestans US-11 as the cause of severe late blight on potato and tomato in Taiwan. Canadian Journal of Plant Pathology 26 (2): 188–192.
Kamoun S, Furzer O, Jones JDG, Judelson HS, Ali GS, Dalio RJD, Guha Roy S, Schena L, Zambounis A, Panabières F, Cahill D, Ruocco M, Figueiredo A, Chen XR, Hulvey J, Stam R, Lamour K, Gijzen M, Tyler BM, Grünwald NJ, Mukhtar MS, Tomé DFA, Tör M, Van Den Ackerveken G, McDowell J, Daayf F, Fry WE, Lindqvist–Kreuze H, Meijer HJG, Petre B, Ristaino J, Yoshida K, Birch PRJ, Govers F. 2015. The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology 16 (4): 413–434.
Kamoun S. 2003. Molecular genetics of pathogenic oomycetes. Eukaryotic Cell 2 (2): 191–199.
Kato M, Mizubuti ES, Goodwin SB, Fry WE. 1997. Sensitivity to protectant fungicides and pathogenic fitness of clonal lineages of Phytophthora infestans in the United States. Phytopathology 87 (9): 973–978.
Kaur A, Doyle D, Cooke DEL, Mullins E, Kildea S. 2024. First report of the Phytophthora infestans EU_43_A1 clonal lineage and associated PiCesA3 mutation G1105S in Ireland. New Disease Reports 49 (2) .
Kimura M. 1962. On the probability of fixation of mutant genes in a population. Genetics 47 (6), 713.
Knaus BJ, Tabima JF, Davis CE, Judelson HS, Grünwald NJ. 2016. Genomic analyses of dominant US clonal lineages of Phytophthora infestans reveals a shared common ancestry for clonal lineages US11 and US18 and a lack of recently shared ancestry among all other US lineages. Phytopathology 106 (11): 1393–1403.
Ko WH. 1978. Heterothallic Phytophthora: evidence for hormonal regulation of sexual reproduction. Microbiology 107 (1): 15–18.
Kousik CS, Keinath AP . 2008. First report of insensitivity to cyazofamid among isolates of Phytophthora capsici from the Southeastern United States. Plant Disease 92:979.
Kuhn CD, Geiger SR, Baumli S, Gartmann M, Gerber J, Jennebach S, Mielke T, Tschochner H, Beckman R, Cramer P. 2007. Functional architecture of RNA polymerase I. Cell 131 (7): 1260–1272.
Kuhn PJ, Pit D, Lee SA, Wakley G, Sheppar AN. 1991. Effects of dimethomorph on the morphology and ultrastructure of Phytophthora. Mycological Research 95: 333–340.
Lalève A, Fillinger S, Walker AS. 2014. Fitness measurement reveals contrasting costs in homologous recombinant mutants of Botrytis cinerea resistant to succinate dehydrogenase inhibitors. Fungal Genetics and Biology 67: 24–36.
Lamour K. 2013. Phytophthora: a global perspective. Cabi.
Latijnhouwers M, de Wit PJ, Govers F. 2003. Oomycetes and fungi: similar weaponry to attack plants. Trends in Microbiology 11 (10): 462–469.
Larson ER, Migliano LE, Chen Y, Gevens AJ. 2021. Mefenoxam sensitivity in US–8 and US-23 Phytophthora infestans from Wisconsin. Plant Health Progress 22 (3): 272–280.
Lee SJ, Rose JK. 2010. Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signaling & Behavior 5 (6): 769–772.
Lee TY, Mizubuti E, Fry WE. 1999. Genetics of metalaxyl resistance in Phytophthora infestans. Fungal Genetics and Biology 26 (2): 118–130.
Leesutthiphonchai W, Judelson HS. 2019. Phytophthora infestans sporangia produced in artificial media and plant lesions have subtly divergent transcription profiles but equivalent infection potential and aggressiveness. Molecular Plant–Microbe Interactions 32 (9): 1077–1087.
Li Y, Cooke DE, Jacobsen E, and van der Lee T. 2013. Efficient multiplex simple sequence repeat genotyping of the oomycete plant pathogen Phytophthora infestans. Journal of Microbiological Methods 92: 316–322.
Li Y, Van der Lee T, Zhu JH, Jin GH, Lan CZ, Zhu SX, Zhang RF, Liu BW, Zhao ZJ, Kessel G, Huang SW, Jacobsen E. 2013. Population structure of Phytophthora infestans in China–geographic clusters and presence of the EU genotype Blue_13. Plant Pathology 62 (4): 932–942.
Li Y, Govers F, Mendes O, Testa A, Jacobsen E, Huang SW, van der Lee TAJ . 2010. A new set of highly informative SSR markers for Phytophthora infestans population analysis assembled into an efficient multiplex. Molecular Ecology Resources: 1–7.
Lucas JA, Greer G, Oudemans PV, Coffey MD. 1990. Fungicide sensitivity in somatic hybrids of Phytophthora capsici obtained by protoplast fusion. Physiological and Molecular Plant Pathology 36 (2): 175–187.
Lurwanu Y, Wang YP, Abdul W, Zhan J, Yang LN. 2020. Temperature–mediated plasticity regulates the adaptation of Phytophthora infestans to azoxystrobin fungicide. Sustainability 12 (3): 1188.
Lynott JS, Cooke DE, Sullivan L, Lees AK. 2024. Sensitivity of dominant UK Phytophthora infestans genotypes to a range of fungicide active ingredients. Plant Pathology 73 (3): 578–589.
Ma D, Jiang J, He L, Cui K, Mu W, Liu F. 2018. Detection and characterization of QoI–resistant Phytophthora capsici causing pepper Phytophthora blight in China. Plant Disease 102 (9): 1725–1732.
Marin MV, Seijo TE, Zuchelli E, Peres NA. 2022. Detection and characterization of quinone outside inhibitor-resistant Phytophthora cactorum and P. nicotianae causing leather rot in Florida strawberry. Plant Disease 106(4): 1203–1208.
Martin FN, Zhang Y, Cooke DE, Coffey MD, Grünwald NJ. Fry WE. 2019. Insights into evolving global populations of Phytophthora infestans via new complementary mtDNA haplotype markers and nuclear SSRs. PLOS One 14 (1): e0208606.
Massi F, Torriani SF, Borghi L, Toffolatti SL. 2021. Fungicide resistance evolution and detection in plant pathogens: Plasmopara viticola as a case study. Microorganisms 9 (1): 119.
Matson ME, Small IM, Fry WE, Judelson HS. 2015. Metalaxyl resistance in Phytophthora infestans: Assessing role of RPA190 gene and diversity within clonal lineages. Phytopathology 105 (12): 1594–1600.
Mboup MK, Sweigard JW, Carroll A, Jaworska G, Genet JL. 2022. Genetic mechanism, baseline sensitivity and risk of resistance to oxathiapiprolin in oomycetes. Pest Management Science 78(3): 905-913.
Mélida H, Sandoval-Sierra JV, Diéguez-Uribeondo J, Bulone V. 2013. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types. Eukaryotic Cell 12 (2): 194–203.
Miao J, Cai M, Dong X, Liu L, Lin D, Zhang C, Pang Z, Liu X. 2016. Resistance assessment for oxathiapiprolin in Phytophthora capsici and the detection of a point mutation (G769W) in PcORP1 that confers resistance. Frontiers in Microbiology 7: 615.
Miguez M, Reeve C, Wood PM, Hollomon DW. 2004. Alternative oxidase reduces the sensitivity of Mycosphaerella graminicola to QOI fungicides. Pest Management Science 60 (1): 3–7.
Mikaberidze A, McDonald BA. 2015. Fitness cost of resistance: impact on management. Fungicide resistance in plant pathogens: principles and a guide to practical management. Springer: 77–89.
Mitani S, Araki S, Ymaguchi T, Takii Y, Ohshima T, Matsuo N. 2001. Biological properties of the novel fungicide cyazofamid against Phytophthora infestans on tomato and Pseudoperonospora cubensis on cucumber. Pest Managament Science 58:139–145.
Mizubuti ES, Fry WE. 1998. Temperature effects on developmental stages of isolates from three clonal lineages of Phytophthora infestans. Phytopathology 88 (8): 837–843.
Mounkoro P, Michel T, Benhachemi R, Surpateanu G, Iorga BI, Fisher N, Meunier B. 2019. Mitochondrial complex III Qi‐site inhibitor resistance mutations found in laboratory selected mutants and field isolates. Pest Management Science 75 (8): 2107–2114.
Mu W, Hu L, Yang M, Wang G, Guo J, Wang A, Miao J, Xi J, Guo W, Liu X, Wang J, Zhang Y, Song J. 2022. Q1077H and V1109L mutations in the CesA3 of Phytophthora nicotianae confers resistance to dimethomorph. Available at SSRN 4241446.
Müller U, Gisi U. 2012. ewest aspects of nucleic acid synthesis inhibitors: Metalaxyl-M. Modern Crop Protection Compounds. Weinheim: 901–908.
Nalumpang S, Poti T, Akimitsu K. 2021. Effect of salicylhydroxamic acid on mycelial growth and baseline sensitivity to azoxystrobin in Phytophthora infestans causing potato late blight in Thailand. International Journal of Agricultural Technology 2021 Vol. 17 (4): 1485–1496.
Naqvi SAH, Farhan M, Ahmad M, Kiran R, Fatima N, Shahbaz M, Akram M, Seelan J, Seelan S, Ali A, Ahmad S. 2024. Deciphering fungicide resistance in Phytophthora: mechanisms, prevalence, and sustainable management approaches. World Journal of Microbiology and Biotechnology 40 (10): 302.
Noel ZA, Wang J, Chilvers MI. 2018. Significant influence of EC50 estimation by model choice and EC50 type. Plant Disease 102(4): 708–714.
OEPP/EPPO. 2015. PP 1/213 (4) resistance risk analysis. OEPP/EPPO Bull. 45: 371–387.
Ojika M, Molli SD, Kanazawa H, Yajima A, Toda K, Nukada T, Mao H, Murata R, Asano T, Qi J, Sakagami Y. 2011. The second Phytophthora mating hormone defines interspecies biosynthetic crosstalk. Nature Chemical Biology 7 (9): 591–593.
Pang Z, Chen L, Mu W, Liu L, Liu X. 2016. Insights into the adaptive response of the plant-pathogenic oomycete Phytophthora capsici to the fungicide flumorph. Scientist Report 6 (1): 24103.
Pasche JS, Wharam CM, Gudmestad NC. 2004. Shift in sensitivity of Alternaria solani in response to QoI fungicides. Plant Disease 88 (2): 181–187.
Pasteris RJ, Hanagan MA, Bisaha JJ,.Finkelstein BL, Hoffman LE, Gregory V, Andreassi JL, Sweigard JA, Klyashchitsky BA, Henry YT. 2016. Discovery of oxathiapiprolin, a new oomycete fungicide that targets an oxysterol binding protein. Bioorganic & Medicinal Chemistry 24: 354–361.
Pasteris RJ, Hoffman LE, Sweigard JA, Andreassi JL, Ngugi HK, Perotin B, Shepherd CP. 2019. Oxysterol‐binding protein inhibitors: oxathiapiprolin–A new Oomycete fungicide that targets an oxysterol‐binding protein. Modern Crop Protection Compounds 2: 979–987.
Paquin B, Lafores MJ, Forget L, Roewer I, Wang Z, Longcore , Lang FB. 1997. The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Current Genetics 31:380–395
Piccirillo G, Carrieri R, Polizzi G, Azzaro A, Lahoz E, Fernández–Ortuño D, Vitale A. 2018. In vitro and in vivo activity of QoI fungicides against Colletotrichum gloeosporioides causing fruit anthracnose in Citrus sinensis. Scientia Horticulturae 236: 90–95.
Puidet B, Mabon R, Guibert M, Kiiker R, Loit K, Le VH, Eikemo H, Dewaegeneire P, Saubeau G, Chatot C, Aurousseau F, Cooke DEL, Lees AK, Abuley IK, Hansen JG, Corbière R, Leclerc M, Najdabbasi N, Andrivon D. 2023. Investigating phenotypic traits as potential drivers of the emergence of EU_37_A2, an invasive new lineage of Phytophthora infestans in Western Europe. Plant Pathology 72 (4): 797–806.
Qin CF, He MH, Chen FP, Zhu W, Yang LN, Wu EJ, Zhan, J. 2016. Comparative analyses of fungicide sensitivity and SSR marker variations indicate a low risk of developing azoxystrobin resistance in Phytophthora infestans. Scientific Reports 6 (1): 20483.
Randall E, Young V, Sierotzki H, Scalliet G, Birch PRJ, Cooke DEL, Csukai M, Whisson SC. 2014. Sequence diversity in the large subunit of RNA polymerase I contributes to mefenoxam insensitivity in Phytophthora infestans. Molecular Plant Pathology 15: 664–676.
Rekanović E, Potočni, I, Milijašević–Marčić S, Stepanović M, Todorović B, Mihajlović, M. 2011. Sensitivity of Phytophthora infestans (Mont.) de Bary isolates to fluazinam, fosetyl–Al and propamocarb–hydrochloride. Pesticidi i fitomedicina 26 (2): 111–116.
Rekanović E, Potočnik I, Milijašević–Marčić S, Stepanović M, Todorović B, Mihajlović M. 2012. Toxicity of metalaxyl, azoxystrobin, dimethomorph, cymoxanil, zoxamide and mancozeb to Phytophthora infestans isolates from Serbia. Journal of Environmental Science and Health 47 (5): 403–409.
Ritz C, Strebig JC, Ritz MC. 2016. Package ‘drc’. Creative commons: mountain view, CA, USA.
Röhr H, Stahl U. 2003. Alternative respiration in plants and fungi: some aspects of its biological role. Progress in Botany: Genetics Physiology Systematics Ecology, 27–41.
Russell PE. 2003. Sensitivity baselines in fungicide resistance research and management.: FRAC Monograph No 3. CropLife International, Brussels, 56 pp.
Samen FMAE, Oberoi K, Taylor RJ, Secor GA, Gudmestad NC. 2005. Inheritance of mefenoxam resistance in selfed populations of the homothallic oomycete Phytophthora erythroseptica (Pethybr.), cause of pink rot of potato. American Journal of Potato Research 82: 105–115.
Santos RF, Ciampi–Guillardi M, Fraaije BA, De Oliveira AA, Amorim L. 2020a. The climate–driven genetic diversity has a higher impact on the population structure of Plasmopara viticola than the production system or QoI fungicide sensitivity in subtropical Brazil. Frontiers in Microbiology 11: 575045.
Santos RF, Fraaije BA, Garrido LDR, Monteiro‐Vitorello CB, Amorim L. 2020b. Multiple resistance of Plasmopara viticola to QoI and CAA fungicides in Brazil. Plant Pathology 69 (9): 1708–1720.
Saville A, Graham K, Grünwald NJ, Myers K, Fry WE, Ristaino JB. 2015. Fungicide sensitivity of US genotypes of Phytophthora infestans to six oomycete–targeted compounds. Plant Disesae 99: 659–666.
Saville A, Ristaino JB. 2019. Genetic structure and subclonal variation of extant and recent U.S. lineages of Phytophthora infestans. Phytopathology 109 (9): 1614–1627.
Schepers HTAM, Kessel GJT, Lucca F, Förch MG, Van Den Bosch GBM, Topper CG, Evenhuis A. 2018. Reduced efficacy of fluazinam against Phytophthora infestans in the Netherlands. European Journal of Plant Pathology 151: 947–960.
Schneider DA. 2012. RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation. Gene 493 (2): 176–184.
Seidl Johnson AC, Gevens AJ. 2014. Investigating the host range of the US-22, US-23, and US-24 clonal lineages of Phytophthora infestans on solanaceous cultivated plants and weeds. Plant Disease 98 (6): 754–760.
Shi Y, Sun B, Xie X, Chai,A, Li L, Li B. 2021. Site‐directed mutagenesis of the succinate dehydrogenase subunits B and D from Corynespora cassiicola reveals different fitness costs and sensitivities to succinate dehydrogenase inhibitors. Environmental Microbiology 23 (10): 5769–5783.
Shao W, Zhang Y, Ren W, Chen,C. 2015. Physiological and biochemical characteristics of laboratory induced mutants of Botrytis cinerea with resistance to fluazinam. Pesticide Biochemistry and Physiology 117: 19–23.
Shattock RC. 1986. Inheritance of metalaxyl resistance in the potato late blight fungus. Brighton Crop Protection Conference: 555–560.
Shattock RC. 1988. Studies on the inheritance of resistance to metalaxyl in Phytophthora infestans. Plant Pathology 37: 4–11.
Shattock RC . 2002. Phytophthora infestans: populations, pathogenicity and phenylamides. Pest Management Science 58 (9): 944–950.
Siegenthaler TB, Hansen ZR. 2021. Sensitivity of Phytophthora capsici from Tennessee to mefenoxam, fluopicolide, oxathiapiprolin, dimethomorph, mandipropamid, and cyazofamid. Plant Disease 105 (10): 3000–3007.
Sierotzki H, Blum M, Olaya G, Waldner–Zulauf M, Wullschleger J, Cohen Y, Gisi U. 2011. Sensitivity to CAA fungicides and frequency of mutations in cellulose synthase (CesA3) gene of oomycete pathogen populations. In: Dehne HW, Deising HB, Gisi U, Kuck KH, Russell PE, Lyr H (eds) Modern fungicides and antifungal compounds VI, Proceedings 16th international Reinhardsbrunn symposium. DPG Selbstverlag, Braunschweig, pp 103–110.
Sierotzki H, Frey R, Wullschleger J, Palermo S, Karlin S, Godwin J, Gisi U. 2007. Cytochrome b gene sequence and structure of Pyrenophora teres and P. tritici–repentis and implications for QoI resistance. Pest Management Science 63: 225–233.
Sierotzki H. 2015. Respiration inhibitors: complex III. Fungicide Resistance in Plant Pathogens: Principles and a Guide to Practical Management: 119–143.
Sierotzki H. Kraus N,Fernandes N,Gisi U. 2008. Dynamics of QoI resistance in Plasmopara viticola, Modern Fungicides and Antifungal Compounds V: 157–167.
Stein JM, Kirk WW. 2003 . Variations in the sensitivity of Phytophthora infestans isolates from different genetic backgrounds to dimethomorph. Plant Disease 87 (11): 1283–1289.
Sofianos G, Samaras A, Karaoglanidis G. 2023. Multiple and multidrug resistance in Botrytis cinerea: molecular mechanisms of MLR/MDR strains in Greece and effects of co–existence of different resistance mechanisms on fungicide sensitivity. Frontiers in Plant Science 14: 1273193.
Treangen TJ, Salzberg SL. 2012 . Repetitive DNA and next–generation sequencing: computational challenges and solutions. Nature Reviews Genetics 13 (1): 36–46.
Tsedaley B. 2004. Late blight of potato (Phytophthora infestans) biology, economic doi:10.6342/NTU201602731 61 importance and its management approaches Journal of Biology, Agriculture and Healthcare 4: 2224–2225.
van den Bosch F, Oliver R, van den Berg F, Paveley N. 2014. Governing principles can guide fungicide–resistance management tactics. Annual Review of Phytopathology 52: 175–195.
Vitoratos, A. G. 2014 . Mode of action and genetic analysis of resistance to fluazinam in Ustilago maydis. Journal of Phytopathology 162 (11–12): 737–746.
Wang J, Chen S, Zhou Y, Peng Q, Shi N, Du Y, Chen F. 2024. High resistance risk of Phytophthora colocasiae to azoxystrobin in southeastern of China. Pesticide Biochemistry and Physiology 202: 105949.
Wang W, Liu X, Govers F. 2021. The mysterious route of sterols in oomycetes. PLoS Pathogens 17 (6): e1009591.
Wagner AM, Krab K. 1995. The alternative respiration pathway in plants: role and regulation. Physiologia Plantarum 95 (2): 318–325.
Weber-Boyvat M, Zhong W,Yan D, Olkkonen VM. 2013. Oxysterol–binding proteins: functions in cell regulation beyond lipid metabolism. Biochemical pharmacology 86 (1): 89–95.
Werner S, Steiner U, Becher R, Kortekamp A, Zyprian E, Deising HB. 2002. Chitin synthesis during in planta growth and asexual propagation of the cellulosic oomycete and obligate biotrophic grapevine pathogen Plasmopara viticola. FEMS microbiology letters 208 (2): 169–173.
Whittaker SL, Shattock RC, Shaw DS. 1991. Inheritance of DNA contents in sexual progenies of Phytophthora infestans. Mycological Research 95 (9): 1094–1100.
Wollgiehn R, Bräutigam E, Schumann B, Erge D. 1984. Effect of metalaxyl on the synthesis of RNA, DNA and protein in Phytophthora nicotianae. Zeitschrift fûr allgemeine Mikrobiologie 24 (4): 269–279.
Wood PM, Hollomon DW. 2003. A critical evaluation of the role of alternative oxidase in the performance of strobilurin and related fungicides acting at the Qo site of complex III. Pest Management Science 59 (5): 499–511.
Wright S. 1937. The distribution of gene frequencies in populations. Proceedings of the National Academy of Sciences 23 (6): 307–320.
Yang ZH, Qi MX, Qin YX, Zhu JH, Gui XM, Tao B, Xu XH, Zhang FG. 2013. Mitochondrial DNA polymorphisms in Phytophthora infestans: New haplotypes are identified and re–defined by PCR. Journal of Microbiological Methods 95:117–121.
Yin Y, Miao J, Shao W, Liu X, Zhao Y, Ma Z. 2023. Fungicide resistance: Progress in understanding mechanism, monitoring, and management. Phytopathology 113 (4): 707–718.
Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, Thines M, Weigel D, Burbano HA. 2013. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. elife 2: e00731.
Zhang J, Wu Z, Zhou R, Han P, Liang Z, Xing Y, Gao T, Hao J, Liu P, Liu X. 2025. Fluazinam resistance in Colletotrichum gloeosporioides and its association with metabolic detoxification and efflux. Journal of Agricultural and Food Chemistry 73: 7596–7608.
Zhu GN, Huang FX, Feng LX, Qin BX, Yang YH, Chen YH, Lu XH. 2008. Sensitivities of Phytophthora infestans to metalaxyl, cymoxanil, and dimethomorph. Agricultural Sciences in China 7 (7): 831–840.
Zhu SS, Liu XL, Liu PF, Li Y, Li JQ, Wang HM, Yuan SK, Si NG. 2007. Flumorph is a novel fungicide that disrupts microfilament organisation in Phytophthora melonis. Phytopathology 97: 643–649.
Ziogas BN, Baldwin BC, Young, JE. 1997. Alternative respiration: a biochemical mechanism of resistance to azoxystrobin (ICIA 5504) in Septoria tritici. Pesticide Science 50 (1): 28–34.
Zulak KG .2025. Molecular monitoring of fungicide resistance in crop phytopathogens. Molecular Plant–Microbe Interactions, MPMI–09.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98517-
dc.description.abstract晚疫病菌 Phytophthora infestans 從19世紀發現至今,一直都是馬鈴薯與番茄上的重要病害,其在田間病勢發展迅速,若無法提前預防,很容易讓整個田區遭殃,故農民仍仰賴施藥防治。長期施用藥劑下,病原菌將會產生抗藥性,令防治更加困難。在國外,P. infestans 相繼出現具扶吉胺 (fluazinam)、曼普胺 (mandipropamid)、歐西比 (oxathiapiprolin) 抗性的菌株,其中歐西比為近十年新開發的作用機制,具有許多良好特性。在臺灣,P. infestans 相關研究發表稀少,田間菌株的族群及對各藥劑的感受性許久未更新,因此本實驗利用 2018至2024 年所分離的 37 株 P. infestans 菌株分析現今臺灣主流菌系,並透過含藥培養基 (amended agar medium) 觀察已推行的達滅芬 (dimethomorph)、曼普胺 (mandipropamid)、亞托敏 (azoxystrobin)、安美速 (amisulborn)、滅脫定 (ametoctradin)、滅達樂 (metalaxyl)、扶吉胺等藥劑之感受性,最後建立臺灣 P. infestans 菌株對歐西比的基礎感受性 (baseline sensitivity)。經由粒線體五個基因座的單核苷酸多型性進行族群分析,確認 2018 至 2025 年間的臺灣 P. infestans 為 US-11 菌系。在藥劑感受性研究中,發現 2023、2024 年所分離的 P. infestans 菌株在 CAA (carboxylic acid amides) 類藥劑作用標的 CesA3 (cellulose synthases 3) 上出現變異,CesA3 的第 1109 位胺基酸由纈胺酸 (valine, V) 替換為白胺酸 (leucine, L),使具有該變異的 P. infestans 菌株對達滅芬的 EC50 值為 0.56 至 7.24 mg/L。此外,2024年所分離的菌株,在 QoI 類 (quinine-outside inhibitor) 藥劑作用位點細胞色素b (cytochrome b) 上也發生變異,細胞色素 b 的第 142 位胺基酸由甘胺酸 (glycine, G) 替換為丙胺酸 (alanine, A),使具有該變異的 2024 年菌株擁有對亞托敏的抗性 (EC50 值 > 200)。按推薦稀釋倍數 1000 倍稀釋 23% 亞托敏藥劑,將番茄葉片浸泡稀釋藥液後,番茄葉片仍會遭到具 G142A 的 P. infestans 菌株感染,再次證明其對亞托敏的抗性。所有年份的 P. infestans 菌株均保有前人報導之滅達樂抗藥性。最後,本研究中臺灣的 P. infestans 菌株則對其它藥劑曼普胺、安美速、滅脫定、歐西比、扶吉胺高度敏感,其中對歐西比 EC50 值為 0.000010 至 0.000018 mg/L,可作為臺灣的晚疫病菌對歐西比之基礎感受性,供後人參考。綜上所述,本研究證實臺灣 P. infestans 族群並未出現劇烈變化,但既有 US-11 菌系卻變異出對達滅芬、亞托敏的抗藥性。本研究結果為目前農藥使用現況提出警示,顯示有必要持續監測田間抗藥性變化,並建立更為永續的殺菌劑管理策略。zh_TW
dc.description.abstractLate blight (Phytophthora infestans) has been an important disease to potatoes and tomatoes industry since the Great Famine. This disease can spread rapidly in the field, and devastate the entire field without early prevention. To manage this disease, farmers still rely on fungicide application for the control. However, continuous use of fungicide may lead to the development of fungicide resistance. In other countries, P. infestans isolates resistant to fluazinam, mandipropamid, and oxathiapiprolin have been reported. Among them, oxathiapiprolin is a recent addition to fungicide options, developed within the past ten years, and has attracted attention due to its novel action and high effectiveness. In Taiwan, studies on P. infestans are limited, and information on the population structure and fungicide sensitivity of field isolates has not been updated for a long time. To address this gap, this study analyzed 37 P. infestans isolates collected between 2018 and 2024 to characterize the current dominant population in Taiwan. In addition, we evaluated their sensitivity to several commercial fungicides, including dimethomorph, mandipropamid, azoxystrobin, amisulbrom, ametoctradin, metalaxyl, and fluazinam by amended agar medium. Furthermore, we established a baseline sensitivity of P. infestans to oxathiapiprolin. Population analysis based on single-nucleotide polymorphisms (SNPs) at five mitochondrial loci confirmed that the P. infestans populations in Taiwan remain to be US-11 lineage. In the fungicide sensitivity tests, isolates collected in 2023 and 2024 were found to carry a mutation at the target site of carboxylic acid amide (CAA) fungicides: CesA3 (cellulose synthase 3). Valine (V) was substituted to leucine (L) at amino acid position 1109, and isolates carrying this mutation showed elevated EC50 values to dimethomorph (0.56 to 7.24 mg/L). In addition, a mutation at the cytochrome b gene, the target site of QoI (quinone outside inhibitor) fungicides, was detected in our 2024 isolates. A substitution from glycine (G) to alanine (A) at position 142 (G142A) resulted in high resistance to azoxystrobin (EC50 > 200 mg/L). Infection assays using tomato leaves soaked in azoxystrobin (23%) at the recommended dilution (1000x) confirmed that isolates carrying G142A were still capable of causing disease, further demonstrating their resistance. All isolates across years remained resistant to metalaxyl, consistent with previous reports. On the other hand, all isolates used in the experiment were showed highly sensitive to mandipropamid, amisulbrom, ametoctradin, oxathiapiprolin, and fluazinam. Notably, the EC50 value for oxathiapiprolin was as low as 0.000010 to 0.000018 mg/L, which could be a reference for baseline sensitivity of P. infestans in Taiwan. In conclusion, this study demonstrates that the P. infestans population in Taiwan has remained stable, with US-11 as the dominant lineage. However, resistance to dimethomorph and azoxystrobin has emerged within this lineage, likely driven by prolonged fungicide use. These findings give warning of the need for continuous monitoring and more sustainable fungicide management strategies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:25:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:25:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
中文摘要 II
ABSTRACT IV
目次 VI
表次 IX
圖次 XI
壹、 前言 1
一、 晚疫病之重要性與其生活史 1
二、 晚疫病化學防治與抗藥性發生 3
1. 晚疫病化學防治 3
2. 抗藥性發生原理 4
三、 各作用機制抗藥性回顧 5
1. 抗藥性監測與突變位點 5
2. CAA 類藥劑之抗藥性與相關位點研究 6
3. QoI 類藥劑之抗藥性與相關位點研究 8
4. QiI、QoSI 類藥劑之抗藥性與相關位點研究 9
5. PA類藥劑之抗藥性與相關位點研究 11
6. OSBPI類藥劑之抗藥性與相關位點研究 12
7. 其他藥劑之抗藥性 13
四、 P. infestans 族群研究與方法 14
五、 臺灣 P. infestans 研究回顧 16
貳、 材料與方法 19
一、 P. infestans 菌株分離、培養與保存 19
二、 核酸純化與菌種鑑定 20
三、 粒線體之單核苷酸多型性分析與系統發生樹 21
四、 抗藥性高突變風險區段序列之分析 22
五、 P. infestans 在不同藥劑影響下之菌絲生長直徑測試 24
六、 P. infestans 在亞托敏影響下對番茄葉片之感染力測試 26
七、 歐西比對 P. infestans 孢囊發芽之抑制效果測試 27
參、 結果 28
一、 臺灣 P. infestans 族群狀況之結果 28
二、 臺灣 P. infestan 在抗藥性高突變風險區段之序列結果 28
三、 作用位點突變對 P. infestans 菌絲生長於不同藥劑之影響 30
四、 2024年 P. infestans 菌株對多種藥劑之感受性測試結果 31
五、 P. infestans 在亞托敏影響下對番茄葉片之感染力測試 33
六、 歐西比對 P. infestans 孢囊發芽之抑制效果 33
肆、 討論 34
一、 臺灣 P. infestans 族群現況分析 34
二、 臺灣 P. infestans 對 CAA 類藥劑的感受性調查結果分析 35
三、 臺灣 P. infestans 對 QoI 類藥劑的感受性調查結果分析 36
四、 臺灣 P. infestans 對 QiI、QoSI 的感受性調查結果分析 37
五、 臺灣P. infestans對滅達樂的感受性調查結果分析 38
六、 臺灣P. infestans對扶吉胺的感受性調查結果分析 39
七、 臺灣P. infestans對歐西比之基礎感受性建立 40
八、 晚疫病抗藥性成因與抗藥性管理 41
九、 對臺灣晚疫病管理的影響 42
伍、 表 44
陸、 圖 63
柒、 參考文獻 85
捌、 附錄表 103
玖、 附錄圖 108
-
dc.language.isozh_TW-
dc.subject臺灣zh_TW
dc.subject晚疫病zh_TW
dc.subject族群調查zh_TW
dc.subject粒線體單核苷酸多型性zh_TW
dc.subject抗藥性監測zh_TW
dc.subject亞托敏zh_TW
dc.subject達滅芬zh_TW
dc.subject滅達樂zh_TW
dc.subject歐西比zh_TW
dc.subject抗藥性管理zh_TW
dc.subjectoxathiapiprolinen
dc.subjectmetalaxylen
dc.subjectTaiwanen
dc.subjectPhytophthora infestansen
dc.subjectpopulation surveyen
dc.subjectsingle-nucleotide polymorphisms (SNPs)en
dc.subjectfungicide resistance detectingen
dc.subjectazoxystrobinen
dc.subjectdimethomorphen
dc.subjectfungicide resistance managementen
dc.title臺灣晚疫病菌抗藥性調查及歐西比基礎感受性建立zh_TW
dc.titleInvestigation of Fungicides Resistance and Establishment of Oxathiapiprolin Baseline Sensitivity in Phytophthora infestans from Taiwanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor洪挺軒zh_TW
dc.contributor.coadvisorTing-Hsuan Hungen
dc.contributor.oralexamcommittee鍾嘉綾;林乃君;黃晉興zh_TW
dc.contributor.oralexamcommitteeChia-Lin Chung;Nai-Chun Lin;Jin-Hsin Huangen
dc.subject.keyword臺灣,晚疫病,族群調查,粒線體單核苷酸多型性,抗藥性監測,亞托敏,達滅芬,滅達樂,歐西比,抗藥性管理,zh_TW
dc.subject.keywordTaiwan,Phytophthora infestans,population survey,single-nucleotide polymorphisms (SNPs),fungicide resistance detecting,azoxystrobin,dimethomorph,metalaxyl,oxathiapiprolin,fungicide resistance management,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202502336-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-31-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物醫學碩士學位學程-
dc.date.embargo-lift2025-08-15-
顯示於系所單位:植物醫學碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf5.26 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved