Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98501
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孔令傑zh_TW
dc.contributor.advisorLing-Chieh Kungen
dc.contributor.author吳冠霆zh_TW
dc.contributor.authorGuan-Ting Wuen
dc.date.accessioned2025-08-14T16:21:43Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citationAghezzaf, E. H., M. A. Jamali, D. Ait-Kadi. 2007. An integrated production and preventive maintenance planning model. European Journal of Operational Research 181(2) 679–685.
Aghezzaf, E. H., A. Khatab, P. L. Tam. 2016. Optimizing production and imperfect preventive maintenance planning’s integration in failure-prone manufacturing systems. Reliability Engineering & System Safety 145 190–198.
Aldurgam, M. Mohammad. 2020. Dynamic maintenance, production and inspection policies, for a single-stage, multi-state production system. IEEE Access 8 105645–105658.
Chang, J.-Y. 2023. Preventive maintenance and production planning in a multi-product flexible flow shop environment. Master’s thesis.
Chen, T.-H. 2024. An integrated production-maintenance problem in a flow shop with endogenous yield rates. Master’s thesis.
Darendeliler, A., D. Claeys, E.-H. Aghezzaf. 2023. Joint multi-item production and condition-based maintenance control of a system with setup times and stochastic demand. Proceedings of the 12th International Conference on Operations Research and Enterprise Systems: ICORES . Science and Technology Publications (SciTePress), 185–192.
Guo, W., X. Gu. 2020. Joint decision-making of production and maintenance in mixedmodel assembly systems with delayed differentiation configurations. International Journal of Production Research 58(13) 4071–4085.
Iravani, S. M. R., I. Duenyas. 2002. Integrated maintenance and production control of a deteriorating production system. IIE Transactions 34(5) 423–435.
Machani, M., M. Nourelfath. 2012. A variable neighbourhood search for integrated production and preventive maintenance planning in multi-state systems. International Journal of Production Research 50(13) 3643–3660.
Shamsaei, F., M. V. Vyve. 2017. Solving integrated production and condition-based maintenance planning problems by mip modeling. Flexible Services and Manufacturing Journal 29(2) 184–202.
Shao, X., Z. Chen, B. R. Sarker. 2022. An joint decision of production and maintenance plan (Q,N) for a two-stage deteriorating jit production system with random breakdowns. Production Engineering 16 89–107.
Sloan, T. W., J. G. Shanthikumar. 2000. Combined production and maintenance scheduling for a multiple-product, single-machine production system. Production and Operations Management 9(4) 379–399.
Wang, L., Z. Lu. 2016. A predictive production planning with condition-based maintenance in a deteriorating production system. 2016 International Conference on Robotics and Automation Engineering (ICRAE). IEEE, 35–38.
Xiang, Y., C. R. Cassady, T. Jin, C. W. Zhang. 2014. Joint production and maintenance planning with machine deterioration and random yield. International Journal of Production Research 52(6) 1644–1657.
Zhang, N., K. Cai, Y. Deng, J. Zhang. 2023. Determining the optimal production–maintenance policy of a parallel production system with stochastically interacted yield and deterioration. Reliability Engineering System Safety 237 109342.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98501-
dc.description.abstract本研究探討在流水線生產系統中具備部分維護機制的多階段整合生產與維護問題。在此情境下,機器狀態會隨時間惡化導致良率下降,且產生的瑕疵品無法重新加工,需要透過預防性維修恢復機器效能。系統提供多種維護等級,每種等級能帶來不同程度的良率提升,同時也伴隨不同程度的產能損失。每個生產階段皆假設具有已知的最大產能,並會因選擇的維護等級而減少。本研究假設該生產系統僅生產單一產品,且生產需要依序經過多個生產階段。每一期的需求為確定且事先已知,若未能滿足需求則會產生短缺成本。本研究的目標是找出一個整合的生產與維護排程以最小化總成本,其中包含生產成本、庫存成本與短缺成本。
在本研究中,我們以非線性整數規劃模型(NLIP)來構建此問題。由於NLIP 模型求解較耗時,我們設計了一套啟發式演算法,能在可接受的計算時間內提供近似最適佳解。該演算法包含三個階段。第一階段透過向後搜尋(backward search),為每個生階段獨立產生維護排程。接著在第二階段中,利用線性規劃模型決定生產計畫。第三階段則調整維護時間,以增強整體維護排程中各階段之間的一致性。透過數值實驗,我們展示了所提演算法的有效性,並證明該演算法的結構具備平行化的潛力,可進一步提升運算效率。最後,我們在隨機環境下進行額外實驗,進一步驗證所提演算法在處理不確定性時仍能維持有效性與效率。
zh_TW
dc.description.abstractThis research addresses a multi-stage integrated production and maintenance problem with partial maintenance in a flow shop production system. In this setting, machine conditions deteriorate over time, leading to a decline in yield rate, and any defective items produced cannot be reworked. To restore the machine performance, preventive maintenance can be performed. Multiple maintenance levels are available, each offering a different degree of yield improvement, but also incurring varying levels of capacity loss. Each production stage is assumed to have a known maximum processing capacity, which is reduced depending on the chosen maintenance level. We assume the production system only produces a single type of product, which must be processed sequentially across multiple stages. A deterministic demand is specified for every period in advance, and any unfulfilled demand incurs a shortage cost. The objective of this research is to determine an integrated production and maintenance schedule that minimizes the total cost, which comprises production cost, inventory cost, and shortage cost.
In this study, we formulate the problem with nonlinear integer programming model. Since the NLIP model is time-consuming, we develop a heuristic algorithm which is able to provide near-optimal solution in an acceptable computation time. The proposed algorithm consists of three phases. In first phase, maintenance schedule for each stage is generated independently by backward search process. After that, the production plan can be obtained by linear programming model in second phase. In the third phase, perform maintenance timing shifting to enhance inter-stage dependencies of the overall schedule. Through numerical experiment, we illustrate the effectiveness of our proposed algorithm, and further indicate its inherent structure is able to implement parallelization which provide more efficiency. Finally, we conduct an additional experiment under a stochastic environment, which further confirms the efficiency of the proposed algorithm in handling uncertainty.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:21:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:21:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
Contents iii
List of Figures vii
List of Tables ix
1 Introduction 1
1.1 Background and motivation 1
1.2 Research objectives 3
1.3 Research plan 4
2 Literature Review 6
2.1 Single stage production with single machine 6
2.2 Single stage production with multiple machines 10
2.3 Multiple stages production 11
3 Problem Description and Formulation 14
3.1 Problem Description 14
3.2 Formulation 16
4 Algorithms 22
4.1 The all-stage backward search with maintenance timing shifting algorithm (ABSMTS) 22
4.1.1 Maintenance scheduling 24
4.1.2 Production plan generation 31
4.1.3 Maintenance timing shifting 32
4.2 Benchmark 38
4.2.1 Twenty-minutes solver (TMS) 38
4.2.2 All-stage backward search (ABS) 38
4.2.3 Bottleneck backward search with alignment (BBSA) 39
4.2.4 Aggressive maintenance (AM) 40
4.3 Numerical Study 44
4.3.1 Experiment settings 44
4.3.2 Solution Performance 47
4.3.3 Solution time 51
5 Stochastic Yield Declining Rates 55
5.1 Problem and formulation adjustment 55
5.2 Adjusted algorithm 56
5.3 Numerical settings 59
5.3.1 Experiment settings 59
5.3.2 Solution performance 60
6 Conclusion and Future directions 65
6.1 Conclusion 65
6.2 Future directions 66
Bibliography 67
-
dc.language.isoen-
dc.subject流水線zh_TW
dc.subject生產計畫zh_TW
dc.subject預防性保養zh_TW
dc.subject部分維護zh_TW
dc.subject非線性整數規劃zh_TW
dc.subject啟發式演算法zh_TW
dc.subjectpreventive maintenanceen
dc.subjectflow shopen
dc.subjectheuristic algorithmen
dc.subjectnonlinear integer programen
dc.subjectpartial maintenanceen
dc.subjectproduction planningen
dc.title多階段流水線生產環境中考量部分維護之生產與預防性保養最佳化問題zh_TW
dc.titleA Production and Preventive Maintenance Problem Considering Partial Maintenance in a Multi-Stage Flow Shop Environmenten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃奎隆;郭佳瑋;余峻瑜zh_TW
dc.contributor.oralexamcommitteeKwei-Long Huang;Chia-Wei Kuo;Jiun-Yu Yuen
dc.subject.keyword流水線,生產計畫,預防性保養,部分維護,非線性整數規劃,啟發式演算法,zh_TW
dc.subject.keywordflow shop,production planning,preventive maintenance,partial maintenance,nonlinear integer program,heuristic algorithm,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202502779-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2025-08-15-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved