請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98477完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬 | zh_TW |
| dc.contributor.advisor | Kung-Bin Sung | en |
| dc.contributor.author | 楊光 | zh_TW |
| dc.contributor.author | Kuang Yang | en |
| dc.date.accessioned | 2025-08-14T16:16:05Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | [1] Kwang Bok Kim; H. Baek; "Photoplethysmography in Wearable Devices: A Comprehensive Review of Technological Advances, Current Challenges, and Future Directions", ELECTRONICS, 2023.
[2] Boudewijn Venema; Nikolai Blanik; Vladimir Blazek; Hartmut Gehring; Alexander Opp; Steffen Leonhardt; "Advances In Reflective Oxygen Saturation Monitoring With A Novel In-ear Sensor System: Results Of A Human Hypoxia Study", IEEE TRANSACTIONS ON BIO-MEDICAL ENGINEERING, 2012. [3] Kirszenblat R, Edouard P. Validation of the Withings ScanWatch as a Wrist-Worn Reflective Pulse Oximeter: Prospective Interventional Clinical Study. J Med Internet Res. 2021 Apr 26;23(4):e27503. doi: 10.2196/27503. PMID: 33857011; PMCID: PMC8078374. [4] Gerboni G, Comunale G, Chen W, Lever Taylor J, Migliorini M, Picard R, Cruz M, Regalia G. Prospective clinical validation of the Empatica EmbracePlus wristband as a reflective pulse oximeter. Front Digit Health. 2023 Dec 4;5:1258915. doi: 10.3389/fdgth.2023.1258915. PMID: 38111608; PMCID: PMC10726006. [5] Ikeda, Keita PhD*; MacLeod, David B. MBBS, FRCA*; Grocott, Hilary P MD, FRCPC, FASE†; Moretti, Eugene W. MD, MHSc*; Ames, Warwick MBBS, FRCA*; Vacchiano, Charles PhD, CRNA‡. The Accuracy of a Near-Infrared Spectroscopy Cerebral Oximetry Device and Its Potential Value for Estimating Jugular Venous Oxygen Saturation. Anesthesia & Analgesia 119(6):p 1381-1392, December 2014. | DOI: 10.1213/ANE.0000000000000463 [6] Ting Li, Meixue Duan, Kai Li, Guoqiang Yu, and Zhengshang Ruan, "Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy," Biomed. Opt. Express 6, 3431-3436 (2015) [7] ALTUN, D, DOĞAN, A, ARNAZ, A, YÜKSEK, A, YALÇINBAŞ, Y. K, TÜRKÖZ, R, & SARIOĞLU, C. T (2020). Noninvasive monitoring of central venous oxygen saturation by jugular transcutaneous near-infrared spectroscopy in pediatric patients undergoing congenital cardiac surgery. Turkish Journal of Medical Sciences 50 (5): 1280-1287. https://doi.org/10.3906/sag-1911-135 [8] Colquhoun, D.A., Tucker-Schwartz, J.M., Durieux, M.E. et al. Non-invasive estimation of jugular venous oxygen saturation: a comparison between near infrared spectroscopy and transcutaneous venous oximetry. J Clin Monit Comput 26, 91–98 (2012). https://doi.org/10.1007/s10877-012-9338-0 [9] Walton, Z.D., Kyriacou, P.A., Silverman, D.G. et al. Measuring venous oxygenation using the photoplethysmograph waveform. J Clin Monit Comput 24, 295–303 (2010). https://doi.org/10.1007/s10877-010-9248-y [10] Franceschini, M. A., Boas, D. A., Zourabian, A., Diamond, S. G., Nadgir, S., Lin, D. W., ... & Fantini, S. (2002). Near-infrared spiroximetry: noninvasive measurements of venous saturation in piglets and human subjects. Journal of applied physiology. [11] Yoxall, C.W., Weindling, A.M. Measurement of venous oxyhaemoglobin saturation in the adult human forearm by near infrared spectroscopy with venous occlusion. Med. Biol. Eng. Comput. 35, 331–336 (1997). https://doi.org/10.1007/BF02534086 [12] D. Berwal, A. Kuruba, A. M. Shaikh, A. Udupa and M. S. Baghini, "SpO2 Measurement: Non-Idealities and Ways to Improve Estimation Accuracy in Wearable Pulse Oximeters," in IEEE Sensors Journal, vol. 22, no. 12, pp. 11653-11664, 15 June15, 2022, doi: 10.1109/JSEN.2022.3170069. [13] Park YR, Shin YK, Eom JB. Non-contact oxygen saturation monitoring for wound healing process using dual-wavelength simultaneous acquisition imaging system. Biomed Eng Lett. 2023 Apr 12;13(3):1-9. doi: 10.1007/s13534-023-00275-x. Epub ahead of print. PMID: 37360626; PMCID: PMC10092937. [14] 林祥竣, “基於遠程光體積變化描記圖技術之血氧量測,” 國立陽明交通大學, 2022 [15] 徐麒博, “基於臉部遠距光體積變化描記圖訊號之波型特徵的血壓量測系統,” 國立陽明交通大學, 2022 [16] Ali Al-Naji; Ghaidaa A. Khalid; Jinan F. Mahdi; Javaan Chahl; "Non-Contact SpO2 Prediction System Based on A Digital Camera", APPLIED SCIENCES, 2021. [17] Panayiotis A Kyriacou; Tina Zaman; Sandip K Pal; "Photoplethysmography in Post-operative Monitoring of Deep Inferior Epigastric Perforator (DIEP) Free Flaps", PHYSIOLOGICAL MEASUREMENT, 2020. [18] Badiola I, Blazek V, Jagadeesh Kumar V, George B, Leonhardt S, Hoog Antink C. Accuracy enhancement in reflective pulse oximetry by considering wavelength-dependent pathlengths. Physiol Meas. 2022 Sep 5;43(9). doi: 10.1088/1361-6579/ac890c. PMID: 35959652. [19] John Allen; "Photoplethysmography and Its Application in Clinical Physiological Measurement", PHYSIOLOGICAL MEASUREMENT, 2007. [20] Sally K Longmore; Gough Y Lui; Ganesh Naik; Paul P Breen; Bin Jalaludin; Gaetano D Gargiulo; "A Comparison Of Reflective Photoplethysmography For Detection Of Heart Rate, Blood Oxygen Saturation, And Respiration Rate At Various Anatomical Locations", SENSORS (BASEL, SWITZERLAND), 2019. [21] Hattan K Ballaji; Ricardo Correia; Serhiy Korposh; Barrie R Hayes-Gill; Francisco U Hernandez; Byron Salisbury; Stephen P Morgan; "A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography", SENSORS (BASEL, SWITZERLAND), 2020. [22] Jose Ignacio Rodriguez-Labra; Chris J. Kosik; Dinesh Maddipatla; Binu B. Narakathu; Massood Z. Atashbar; "Development of A PPG Sensor Array As A Wearable Device for Monitoring Cardiovascular Metrics", IEEE SENSORS JOURNAL, 2021. [23] 陳胤甫, “內頸靜脈血氧飽和度可攜式量測系統的開發與建立”, 國立臺灣大學, 2020 [24] 謝昕原, “以近紅外光譜及類神經網路定量內頸靜脈血氧飽和度變化量”, 國立臺灣大學, 2022 [25] 孫欽鉉, “代理模型加速蒙地卡羅模擬及類神經網路定量內頸靜脈血氧變化量”, 國立臺灣大學, 2023 [26] 許逸翔, “內頸靜脈血氧儀之最佳光源-偵測器距離探討與潛在影響因子分析”, 國立臺灣大學, 2023 [27] 李浩維, “以漫反射光譜術與蒙地卡羅模擬於活體定量人體頸部肌肉及淺層組織光學參數”, 國立臺灣大學, 2024 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98477 | - |
| dc.description.abstract | 本研究包含移動式多通道漫反射光譜硬體系統建置、光譜系統整合控制介面製作,由人體漫反射光譜提取血氧飽和度相關特徵,以及比較血氧飽和度相關特徵與腦組織血氧飽和度相關性。移動式多通道漫反射光譜系統以自製的貼片,包含自製探頭,以光源與偵測器間距(source-detector-separation,SDS)=4.5, 7.5, 10.5, 20 mm通道,加上LED光源照射仿體或人體組織,再連續測量漫反射光,以獲取仿體與人體組織漫反射光譜,由人體組織的漫反射光譜可了解如血氧飽和度變化相關的資訊。光譜系統整合控制介面,是用於控制移動式多通道漫反射光譜系統拍攝光譜的介面,控制了拍攝SDS=4.5, 7.5, 10.5 mm通道光譜的EMCCD相機,也控制了拍攝SDS=20 mm通道光譜的QE-Pro光譜儀,可調整如相機曝光時間、拍攝範圍、拍攝總時間與感測器溫度等參數。搭配設定適當的曝光時間,此介面能控制漫反射光譜系統以足夠高的取樣率拍攝SDS=4.5, 7.5, 10.5, 20 mm通道的漫反射光譜,便能觀察人體實驗測量區域—右側脖子內頸靜脈周圍區域,隨血氧飽和度變化的漫反射光譜,以及隨心跳脈搏變化的血壓波形。用整合控制介面收取各SDS通道的人體漫反射光譜後,便能處理人體漫反射光譜,再提取血氧飽和度特徵。漫反射光譜的處理,包含沿波長維度前處理去除雜訊,以及沿時間維度提取心跳脈搏成份。由伐氏操作實驗恢復期漫反射光譜,相對基線階段漫反射光譜計算∆OD光譜,便可進而提取如total hemoglobin與differential hemoglobin等與血氧飽和度相關的特徵。由分析total hemoglobin與differential hemoglobin等特徵,與商用腦血氧儀測量得到的腦組織血氧飽和度相關性,在生理上認知這些特徵與腦組織血氧飽和度具有關聯性的前提下,便可進一步了解這些特徵以什麼方式與腦組織血氧飽和度呈現不同程度的相關。由本研究建立的移動式多通道漫反射光譜系統,搭配整合控制介面測量仿體與人體漫反射光譜訊號,再對人體伐氏操作實驗的漫反射光譜進行處理,與腦組織血氧飽和度分析相關性,大幅推進了非侵入式內頸靜脈血氧儀的開發。 | zh_TW |
| dc.description.abstract | This research proposes a movable multi-channel diffuse reflectance spectra measurement system, an integrated interface to control this hardware system, a tailored workflow to extract the features that can represent the blood oxygen saturation, and analyzing the correlation of these features with the brain tissue’s blood oxygen saturation. The multi-channel diffuse reflectance spectra measurement system is used to measure the reflectance spectra at source-detector-separation(SDS), which represents the distance between the light source and the detector, of 4.5, 7.5, 10.5, 20 mm by a self-designed sensor module and probes. By analyzing the reflectance spectra, we can get insights into the blood oxygen saturation of the measured tissue. The integrated interface controls the EMCCD camera to take pictures of SDS=4.5, 7.5, 10.5 mm and the QE-Pro spectrometer to take photos of SDS=20 mm. One can adjust the parameters, such as exposure time, CCD regions to take photos, how long the reflectance spectra measurement system should take reflectance spectra photos, CCD temperature, etc. The interface can use sampling rates that are fast enough to acquire reflectance spectra that are affected by the blood oxygen saturation of the measured tissue, tissue around the internal jugular vein(IJV) at the neck’s right side, at SDS=4.5, 7.5, 10.5, 20 mm and blood pressure waveforms of IJV that change periodically according to heartbeats. After acquiring reflectance spectra by the developed interface, signal processing is performed and features that represent blood oxygen saturation are extracted. Reflectance spectra can be pre-processed by removing the noise along the wavelength dimension and pulsations caused by heartbeats can be extracted along the time dimension. After pre-processing the in-vivo reflectance spectra and extracting the pulsations of the recovery and baseline stage of the Valsalva maneuver experiment, ∆OD spectra, which are proportional to absorption spectra’s change of the recovery stage with respect to the baseline stage, can be calculated. After ∆OD spectra are calculated, features that represent the blood oxygen saturation, e.g. total hemoglobin and differential hemoglobin can be calculated. By knowing that these features might be correlated to the brain’s blood oxygen saturation physiologically, further analyses can be conducted to realize how these features are related to the brain’s blood oxygen saturation. By building the movable multi-channel diffuse reflectance spectra measurement system; developing the integrated interface which can control different components of this system to acquire reflectance spectra in various settings; designing the workflow to pre-process the in-vivo reflectance spectra to remove noise, extract the pulsations caused by heartbeats, calculate ∆OD spectra, and extract the blood oxygen saturation correlated features; and analyzing the correlation between these features and the brain’s blood oxygen saturation, development of the non-invasive IJV oximeter is greatly progressed. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:16:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:16:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iv 目次 vi 圖次 ix 表次 xvii 第一章. 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 光學非侵入式脈搏血氧儀原理 2 1.4 非侵入式血氧量測技術回顧 11 1.4.1 組織血氧測量技術簡介 11 1.4.2 測量內頸靜脈組織血氧估計中心靜脈血氧飽和度ScvO2 12 1.4.3 以反射式PPG測量靜脈血氧飽和度 13 1.4.4 反射式PPG訊號分析、提取特徵與血氧計算 17 1.4.5 反射式PPG測量位置 19 1.4.6 反射式PPG測量方式 20 1.4.7 實驗室過去成員貢獻 23 1.5研究目標 24 1.6 研究規劃與論文內容安排 26 第二章. 多通道漫反射光譜系統架構與驗證 26 2.1 硬體架構 26 2.1.1 光學系統架構 26 2.1.2 系統人體端 27 2.1.3 光纖束製作與固定 38 2.1.4 系統儀器端 50 2.1.5 光路校正 53 2.2 整合測量介面 56 2.2.1 介面架構 56 2.2.2 使用流程 63 2.3 系統表現 78 2.3.1 光源發光功率穩定度 78 2.3.2 光譜解析度 79 2.3.3 光譜系統通量 85 2.3.4 漫反射光強度測量信雜比 86 第三章. 人體研究 88 3.1 研究流程與參與者紀要 88 3.2 訊號分析 92 3.2.1 訊號前處理 92 3.2.2 提取訊號特徵 96 3.3 訊號特徵與腦組織血氧相關性 118 3.3.1 腦組織血氧明顯變化案例 118 3.3.2 血氧特徵和腦組織血氧相關係數 121 3.3.3 統計分析 133 延伸探討:PPG波形對比和不同變數的關係 136 第四章. 結論與討論 138 參考文獻 142 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 漫反射光譜 | zh_TW |
| dc.subject | 控制介面 | zh_TW |
| dc.subject | 訊號處理 | zh_TW |
| dc.subject | 內頸靜脈 | zh_TW |
| dc.subject | 血氧飽和度 | zh_TW |
| dc.subject | 人體實驗 | zh_TW |
| dc.subject | signal processing | en |
| dc.subject | reflectance spectra | en |
| dc.subject | in-vivo experiment | en |
| dc.subject | blood oxygen saturation | en |
| dc.subject | internal jugular vein | en |
| dc.subject | controlling interface | en |
| dc.title | 頸部多通道近紅外光譜在活體測量及其與腦組織血氧飽和度變化之相關性 | zh_TW |
| dc.title | In Vivo Multi-Channel Near-Infrared Spectroscopy of the Neck and Its Correlation with Changes in Cerebral Tissue Oxygen Saturation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳峻宇;陳健章 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Yu Wu;Chien-Chang Chen | en |
| dc.subject.keyword | 漫反射光譜,控制介面,訊號處理,內頸靜脈,血氧飽和度,人體實驗, | zh_TW |
| dc.subject.keyword | reflectance spectra,controlling interface,signal processing,internal jugular vein,blood oxygen saturation,in-vivo experiment, | en |
| dc.relation.page | 145 | - |
| dc.identifier.doi | 10.6342/NTU202502902 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 11.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
