Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98468
Title: 應用輕量級視覺里程計之自主無人機於無 GPS 環境: 實機飛行驗證
Lightweight Visual Odometry with Deep Features for Autonomous UAVs in GPS-Denied Environments: Real-World Flight Validation
Authors: 詹承諺
Cheng-Yen Chan
Advisor: 陳俊杉
Chuin-Shan Chen
Keyword: 未知室內環境之自主無人機,視覺里程計,基於深度學習之影像局部特徵,局部路徑規劃,
Autonomous UAV in Unknown Indoor Environments,Visual Odometry,Deep learning-based Local Image Features,Local Path Planning,
Publication Year : 2025
Degree: 碩士
Abstract: 自主無人機(UAV)在複雜的室內或無 GPS 環境中運作時,亟需具備穩定且準確的定位能力。傳統視覺里程計(VO)系統依賴手工(hand-crafted)的特徵偵測與追蹤方法,但在低紋理或動態場景中,往往面臨定位效能下降的問題。本論文提出 XVINS,一個專為無人機設計的輕量化視覺里程計框架,結合深度學習特徵(XFeat),以提升前端追蹤流程的穩定性及準確性。本方法採用混合式設計:首先利用傳統光流法進行高效率特徵追蹤,當傳統追蹤無法維持足夠特徵時,則透過XFeat 深度特徵進行補充。經由模擬資料集與實際室內飛行場景的實驗結果顯示,所提出的 XVINS 系統在軌跡穩定性與環境適應性方面,均顯著優於傳統視覺里程計方法。為進一步確保自主飛行的穩定性與可靠性,本研究亦整合光流計,並系統性地調整控制參數,以提升在複雜環境下的飛行控制能力。透過模擬資料集與實際室內飛行場景的實驗結果顯示,所提出的 XVINS 系統結合上述強化措施後,在軌跡穩定性與面對環境挑戰的適應性方面,均顯著優於傳統視覺里程計方法。
Autonomous unmanned aerial vehicles (UAVs) require robust and accurate localization to operate in challenging indoor or GPS-denied environments. Traditional visual odometry (VO) systems, which rely on hand-crafted feature detection and tracking, often struggle in low-texture or dynamic scenes, leading to degraded localization performance. In this thesis, we present XVINS, a lightweight visual odometry framework for UAVs that integrates deep learning-based features (XFeat) to enhance both the robustness and stability of the front-end tracking pipeline. Our method employs a hybrid approach: conventional optical flow is initially used for efficient feature tracking, while deep features from XFeat are selectively introduced to supplement the system when conventional tracking is insufficient. To further ensure stable and reliable autonomous flight, we also incorporate an onboard optical flow sensor and systematically tune control parameters to improve flight control under challenging conditions. Experimental results in both simulated datasets and real-world indoor flight scenarios demonstrate that the proposed XVINS system, together with these additional enhancements, significantly outperforms traditional VO in terms of trajectory stability and resilience to environmental challenges.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98468
DOI: 10.6342/NTU202502789
Fulltext Rights: 未授權
metadata.dc.date.embargo-lift: N/A
Appears in Collections:土木工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
30.15 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved