請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98463完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許正一 | zh_TW |
| dc.contributor.advisor | Zeng-Yei Hseu | en |
| dc.contributor.author | 劉軒瑋 | zh_TW |
| dc.contributor.author | Shiuan-Wei Liu | en |
| dc.date.accessioned | 2025-08-14T16:13:03Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | 行政院農業委員會農糧署。2005。作物施肥手冊。行政院農業委員會農糧署。
吳正宗。認識化學肥料。2005。臺南區農業改良場技術專刊132期:47–48。 胡智傑、張芯瑜、張雅菁。2019。作物土壤管理與施肥技術,作物施肥手冊(水稻篇)。農業試驗所特刊223號:68–78。 陳吉村,2003。花蓮地區之土壤特性與合理化施肥。花蓮地區作物合理化施肥研討會專刊:81–90。 彭瑞菊、陳紹崇、黃榮作。2007。雲嘉南96年一期作水稻稻熱病之發生。臺南區農業改良場農業專訊62期:21–25。 廖勁穎。2012。水稻合理化施肥技術。臺東區農業改良場農技報導第9期:1–3。 蔡武雄。2007。植物保護圖鑑系列8。農業部動植物防疫檢疫署:265–272。 Ahmed, N., Habib, U., Younis, U., Irshad, I., Danish, S., Rahi, A. A., and Munir, T. M. 2020. Growth, chlorophyll content and productivity responses of maize to magnesium sulphate application in calcareous soil. Open Agriculture 5: 792–800. Ali, H., Sarwar, N., Muhammad, S., Farooq, O., Rehman, A. U., Wasaya, A., and Akhtar, M. N. 2021. Foliar application of magnesium at critical stages improved the productivity of rice crop grown under different cultivation systems. Sustainability 13: 4962. Altarugio, L.M., Loman, M.H., Nirschl, M.G., Silvano, R.G., Zavaschi, E., Carneiro, L.D.M., and Otto, R. 2017. Yield performance of soybean and corn subjected to magnesium foliar spray. Pesquisa Agropecuária Brasileira 52: 1185–1191. Araujo, M.U., Oliveira, L.M., Silva, L.C., Pinto, L.F., Cacique, I.S., and Rodrigues, F.A. 2023. Silicon, magnesium, and their interaction on wheat resistance against blast. Plant and Soil: 1–21. Asibi, A.E., Chai, Q., and Coulter, J.A. 2019. Rice blast: A disease with implications for global food security. Agronomy 9: 451. Agrios, G.N. 2005. Plant pathology. Elsevier 125–170. Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry 44: 276–287. Blake, G.R. and Hartge, K.H. 1986. Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods 5: 363–375. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72: 248–254. Bray, R.H. and Kurtz, L.T. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil science 59: 39–46. Caferri, R., Guardini, Z., Bassi, R. and Dall’Osto, L. 2022. Assessing photoprotective functions of carotenoids in photosynthetic systems of plants and green algae. In Methods in Enzymology Academic Press 674: 53–84. Cock, J., Yoshida, S. and Forno, D.A. 1976. Laboratory manual for physiological studies of rice. International Rice Research Institute. Gao, F., Guo, J., and Shen, Y. 2024. Advances from chlorophyll biosynthesis to photosynthetic adaptation, evolution and signaling. Plant Stress 12: 10–1016. Chen, Y.N., Wu, D.H., Chen, M.C. and Chen, P.C. 2021. A simple and economical method to induce sporulation of Pyricularia oryzae. Journal of Taiwan Agricultural Research 70: 1–10. Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J. and Birren, B.W. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: 980–986. Ding, Y., Luo, W. and Xu. G. 2006. Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Annals of Applied Biology 149: 111–123. Ebbole, D.J. 2007. Magnaporthe as a model for understanding host-pathogen interactions. Annu. Rev. Phytopathology 45: 437–456. Fageria, N.K., Filho, M.B., Moreira, A. and Guimarães, C.M. 2009. Foliar fertilization of crop plants. Journal of plant nutrition 32: 1044–1064. Fernández, V. and Eichert, T. 2009. Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Critical Reviews in Plant Sciences 28: 36–68. García‐Plazaola, J.I., Fernández‐Marín, B., Ferrio, J.P., Alday, J.G., Hoch, G., Landais, D. and Resco de Dios, V. 2017. Endogenous circadian rhythms in pigment composition induce changes in photochemical efficiency in plant canopies. Plant, Cell and Environment 40: 1153–1162. Gardner, W.H. 1986. Water content. Methods of soil analysis: Part 1 physical and mineralogical methods 5: 493-544. George, D., Girirajdevi, L. and Raj, S.K. 2018. Magnesium sulphate fertilization for yield enhancement in direct seeded rice. Journal of Crop and Weed 14: 195–198. Heath and Packer. 1968. Arch Biochem Biophys 125: 189–198. Heath, R.L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics 125: 189–198. Hermans, C., Johnson, G.N., Strasser, R.J. and Verbruggen, N. 2004. Physiological characterisation of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220: 344–355. Huber, D.M. and Jones, J.B. 2013. The role of magnesium in plant disease. Plant and soil 368: 73–85. IRRI. 2014. Standard evaluation system for rice. pp 57. In: IRRI (eds) International Rice Research Institute, Manila. (in Philippines) Ishfaq, M., Kiran, A., ur Rehman, H., Farooq, M., Ijaz, N.H., Nadeem, F., Wakeel, A. 2022. Foliar nutrition: Potential and challenges under multifaceted agriculture. Environmental and Experimental Botany 200: 104909. Kato, H. 2001. Rice blast disease. Pesticide outlook 12: 23–25. Kato, M. and Shimizu, S. 1985. Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant and cell physiology 26: 1291–1301. Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B.E., Salami, S.A., Babalar, M. 2019. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific reports 9: 19250. MacAdam, J.W., Nelson, C.J. and Sharp, R.E. 1992. Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology 99: 872–878. Mehlich, A. 1953. Rapid determination of cation and anion exchange properties and pHe of soils: 445–457. Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical methods 5: 417–435. Schurt, D.A., Lopes, U.P., Duarte, H.S. and Rodrigues, F.Á. 2014. Effect of magnesium on the development of sheath blight in rice. Journal of Phytopathology 162: 617–620. Sharma, P., Jha, A.B., Dubey, R.S. and Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of botany 2012: 217037. Suzuki, H. 1975. Meteorological factors in the epidemiology of rice blast. Annual Review of Phytopathology 13: 239–256. Swain, B.B., Mishra, S., Mohapatra, P.K., Naik, S.K. and Mukherjee, A.K. 2023. Chemopriming for Induction of Disease Resistance against Pathogens in Rice. Plant Science 334: 111769. Talbot, N.J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annual Reviews in Microbiology 57: 177–202. Tatagiba, S.D., DaMatta, F.M. and Rodrigues, F.A. 2016. Magnesium decreases leaf scald symptoms on rice leaves and preserves their photosynthetic performance. Plant Physiology and Biochemistry 108: 49–56. Thomas, G.W. 1996. Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods 5: 475–490. Tian, X.Y., He, D.D., Bai, S., Zeng, W.Z., Wang, Z., Wang, M. and Chen, Z.C. 2021. Physiological and molecular advances in magnesium nutrition of plants. Plant and Soil 468: 1–17. Verbruggen, N. and Hermans, C. 2013. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant and soil 368: 87–99. Wilson, R.A., Talbot, N.J. 2009. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews Microbiology 7: 185–195. Zhang, Y., Luan, Q., Jiang, J. and Li, Y. 2021. Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Frontiers in plant science 12: 735275. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98463 | - |
| dc.description.abstract | 水稻 (Oryza sativa L.) 是臺灣重要的糧食作物,在整個生育期間皆可能感染由風、水及植株種子傳播Magnaporthe oryzae引起之稻熱病,為水稻主要的真菌性病害。稻熱病傳播速度快且易造成流行病,感染植株各部位,染病植株會因產生灰綠色及白色病斑而減少葉片光合作用面積,嚴重時使水稻產量降低。因此,控制稻熱病病徵擴散是臺灣水稻栽培管理的重要課題。鎂是葉綠素的中心元素,參與許多植物生理代謝反應。過去的研究指出,施用高濃度鎂肥雖然無法直接抑制病原菌入侵植物體內,但藉由增加鎂以提高葉片葉綠素濃度,透過光合作用的增強,進而減緩真菌造成之水稻紋枯病及雲紋葉枯病病徵擴大。然而,目前關於施用鎂肥對於減緩稻熱病病徵擴大及對水稻植株生長的影響之研究仍然不足。因此,本研究透過盆栽水耕試驗種植水稻(台南11號),並接種稻熱病菌及施用 0.27 mM 及 0.54 mM 濃度之鎂肥,以無添加鎂肥作為對照組,檢測葉綠素濃度及抗氧化酵素,以探討不同鎂肥濃度對於稻熱病的抑制效果。試驗結果顯示,有接種病菌處理之 0.27 mM 濃度鎂肥處理的株高、鮮重、葉綠素總量及地上部植體鎂含量最高,而抗氧化酵素活性在 0.27 mM 濃度處理時最低,但丙二醛濃度卻是最高的。再者,透過盆栽土耕試驗,葉面噴施 20 mM、40 mM 及 80 mM 鎂肥,結果發現,接種病菌後,水稻葉綠素總量在 40 mM 處理時降低,與未接種病菌處理有顯著 (p < 0.05) 差異,而 80 mM 鎂肥處理的葉綠素總量、抗氧化酵素活性、及丙二醛皆與接種前沒有顯著差異。有葉面噴施鎂肥之過氧化酶活性明顯高於無添加鎂肥處理。未來建議能依不同土壤性質進行鎂肥施用,以降低農藥使用量,維護生態平衡及維持作物產量與品質。 | zh_TW |
| dc.description.abstract | Rice (Oryza sativa L.) is the most important staple crop in Taiwan. Blast is one of the destructive fungal diseases of rice caused by Magnaporthe oryzae, via the transport by wind, water, and seed during the whole growth stage and can easily cause epidemic. Various organs of the rice plant can be infected by the spores, while reducing the photosynthetic area due to the development of gray-green and white lesions, and further results in yield losses. Magnesium (Mg) is the core atom of chlorophyll, involved in various physiological metabolisms in plants. Past studies have shown that, even though Mg did not directly inhibit the penetration of pathogens into the plants, the application of high concentration of Mg fertilizer increased the chlorophyll concentration in rice leaves, by increasing foliar Mg concentration, which increased the ability of the photosynthesis and consequently decreased the sheath blight and the leaf scald symptoms caused by fungal Rhizoctonia solani and Monographella albescens. However, the effects of Mg fertilizer application on the rice blast disease remains unclear. Thus, this study aims to explore the impact of Mg on delaying the expansion of blast disease symptoms and rice growth by conducting hydroponic cultures of rice variety Tainan 11 with inoculating the spores of Magnaporthe oryzae and applying Mg fertilizer at 0.27 mM and 0.54 mM, with a treatment without Mg fertilizer serving as the control. Additionally, the inhibitory effects of different Mg fertilizer concentrations on rice blast disease will be evaluated by measuring chlorophyll concentration and antioxidant enzymes. The experimental results showed that, among the inoculated treatments, the 0.27 mM magnesium treatment exhibited the highest plant height, fresh weight, total chlorophyll content, and shoot magnesium concentration. Moreover, antioxidant enzyme activities were lowest in the 0.27 mM treatment, which may have indirectly led to an increase in malondialdehyde (MDA) concentration. Additionally, foliar sprays were applied Mg fertilizer at concentrations of 20 mM, 40 mM, and 80 mM in pot experiments. After pathogen inoculation, total chlorophyll significantly decreased in the 40 mM treatment compared to the non-inoculated treatment (p < 0.05). However, in the 80 mM treatment, total chlorophyll, antioxidant enzyme activity, and MDA did not differ significantly in inoculation treatment. Peroxidase activity was significantly higher (p < 0.05) in applying Mg fertilizer plants compared to 0 mM treatment, suggesting the activation of a protective mechanism against disease stress. These findings suggest that Mg fertilizer application could be adjusted according to soil properties, thereby reducing the use of pesticides for maintaining ecological balance and ensuring crop yield and quality in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:13:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:13:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝誌 II 中文摘要 III Abstract IV 目次 VI 圖次 IX 表次 X 第一章 前言 1 第二章 文獻回顧 3 2.1 鎂對水稻生理之影響 3 2.1.1 鎂肥來源與施用 3 2.1.2 葉面噴施之鎂肥濃度及施用時機 4 2.2 稻熱病對水稻之影響 5 2.3鎂肥施用與禾本科植物病害的關係 7 2.4 光合作用色素 9 第三章 材料與方法 10 3.1 土壤樣品之採集 11 3.2土壤基本理化性質分析 11 3.2.1土壤水分含量 11 3.2.2 總體密度 11 3.2.3 土壤酸鹼值 12 3.2.4 電導度 12 3.2.5 質地分析 12 3.2.6 土壤有效性磷 13 3.2.7 土壤有效性鉀 14 3.2.8 陽離子交換容量 15 3.2.9 鹽基飽和度 16 3.3 鎂肥施用處理 16 3.4 盆栽試驗 16 3.4.1 水耕試驗 17 3.4.2 土耕試驗 19 3.5 稻熱病菌製備 19 3.6 植體採收 20 3.7 植體生長性狀及巨量營養元素分析 21 3.8 植體光合作用色素含量 21 3.9 植體抗氧化酵素活性 22 3.9.1 過氧化氫酶 23 3.9.2 超氧岐化酶 24 3.9.3 過氧化酶 26 3.10 植體丙二醛含量 27 3.11 葉片稻熱病病斑檢定 28 3.12 統計分析 30 第四章 結果與討論 31 4.1 水耕試驗結果 31 4.1.1 植株生質量 31 4.1.2 植株高度及根長 39 4.1.3 病徵程度 42 4.1.4 巨量元素分析結果 44 4.1.5 光合作用色素 47 4.1.6 抗氧化酵素活性 50 4.1.7 丙二醛含量 52 4.1.8 主成分分析 54 4.2 土耕試驗結果 58 4.2.1 土壤基本性質 58 4.2.2 植物生質量 60 4.2.3 巨量元素分析結果 66 4.2.4 光合作用色素 68 4.2.5 抗氧化酵素活性 71 4.2.6 丙二醛含量 73 4.2.7 主成分分析 75 第五章 結論 79 第六章 參考文獻 80 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 抗氧化酵素 | zh_TW |
| dc.subject | 葉綠素 | zh_TW |
| dc.subject | 鎂肥 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 稻熱病 | zh_TW |
| dc.subject | rice blast | en |
| dc.subject | antioxidant enzyme | en |
| dc.subject | chlorophyll | en |
| dc.subject | magnesium fertilizer | en |
| dc.subject | Oryza sativa L. | en |
| dc.title | 鎂肥施用對水稻之稻熱病及生長的影響 | zh_TW |
| dc.title | The effects of magnesium fertilizer application on blast disease and growth of rice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王尚禮;胡智傑 | zh_TW |
| dc.contributor.oralexamcommittee | Shan-Li Wang;Chi-Chieh Hu | en |
| dc.subject.keyword | 抗氧化酵素,葉綠素,鎂肥,水稻,稻熱病, | zh_TW |
| dc.subject.keyword | antioxidant enzyme,chlorophyll,magnesium fertilizer,Oryza sativa L.,rice blast, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202502159 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | - |
| dc.date.embargo-lift | 2030-07-22 | - |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 9.77 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
