Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98462
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁宗蘇zh_TW
dc.contributor.advisorTzung-Su Dingen
dc.contributor.author江銓耀zh_TW
dc.contributor.authorChuan-Yao Chiangen
dc.date.accessioned2025-08-14T16:12:50Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation丁宗蘇(1993)。玉山地區成熟林之鳥類群聚生態。碩士論文,國立臺灣大學動物學研究所。
丁宗蘇、吳森雄、吳建龍、阮錦松、林瑞興、楊玉祥、蔡乙榮(2023)。2023 年臺灣鳥類名錄。中華民國野鳥學會。臺北,臺灣。
內政部地政司(2022)。2022年版全臺灣及部分離島20公尺網格數值地形模型(DTM)資料。資料來源:https://data.gov.tw/dataset/160361(下載日期:2024年7月31日)
范孟雯、徐瑋婷、蔡明剛、魏心怡、柯智仁、林瑞興、方偉宏、張瑞麟、呂翊維、李培芬(2024)。臺灣繁殖鳥類大調查2023年報。農業部生物多樣性研究所,南投。
袁子能(2010)。冠羽畫眉之群成員數與群穩定度。碩士論文,國立臺灣大學森林環境暨資源學研究所。
許晃雄、王嘉琪、陳正達、李明旭、詹士樑 (2024)。國家氣候變遷科學報告2024:現象、衝擊與調適 [許晃雄、李明旭 主編]。國家科學及技術委員會與環境部聯合出版。
趙容(2015)。以玉山重複調查及公民科學資料探討臺灣繁殖鳥類海拔分布變遷。國立臺灣大學碩士論文。
農業部林業及自然保育署. (2024年5月1日). 野生動物監測8年巨量資料揭密山羌豐富度第一水鹿族群擴及低海拔. 森林及自然保育署. https://conservation.forest.gov.tw/LatestNews/0073612
Balasubramaniam, P., & Rotenberry, J. T. (2016). Elevation and latitude interact to drive life-history variation in precocial birds: A comparative analysis using galliformes. Journal of Animal Ecology, 85(6), 1528–1539.
Burrows, M. T., Schoeman, D. S., Richardson, A. J., Molinos, J. G., Hoffmann, A., Buckley, L. B., Moore, P. J., Brown, C. J., Bruno, J. F., Duarte, C. M., Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Kiessling, W., O’Connor, M. I., Pandolfi, J. M., Parmesan, C., Sydeman, W. J., Ferrier, S., … Poloczanska, E. S. (2014). Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507(7493), 492–495.
Buckland, S. T., D. R. Anderson, K. P. Burnham, and J. L. Laake. (1993). Distance sampling: Estimating abundance of biological populations. Chapman & Hall, London, United Kingdom.
Campos-Cerqueira, M., Arendt, W. J., Wunderle Jr, J. M., & Aide, T. M. (2017). Have bird distributions shifted along an elevational gradient on a tropical mountain? Ecology and Evolution, 7(23), 9914–9924.
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 333(6045), 1024–1026.
Chen, Y.-H., Lenoir, J., & Chen, I.-C. (2025). Limited evidence for range shift–driven extinction in mountain biota. Science, 388(6748), 741–747.
Chou, C.-H., & Tang, H.-Y. (2016). Conservation of Biodiversity in Taiwan. Botanica Orientalis: Journal of Plant Science, 10, 1–5.
Couet, J., Marjakangas, E.-L., Santangeli, A., Kålås, J. A., Lindström, Å., & Lehikoinen, A. (2022). Short-lived species move uphill faster under climate change. Oecologia, 198(4), 877–888.
DeLuca, W. V., & King, D. I. (2016). Montane birds shift downslope despite recent warming in the northern Appalachian Mountains. Journal of Ornithology., 158, 493–505.
Dunn, P. O., & Møller, A. P. (2014). Changes in breeding phenology and population size of birds. Journal of Animal Ecology, 83(3), 729–739.
Elsen, P. R., Tingley, M. W., Kalyanaraman, R., Ramesh, K., & Wilcove, D. S. (2017). The role of competition, ecotones, and temperature in the elevational distribution of Himalayan birds. Ecology, 98(2), 337–348.
Forero-Medina, G., Terborgh, J., Socolar, S. J., & Pimm, S. L. (2011). Elevational Ranges of Birds on a Tropical Montane Gradient Lag behind Warming Temperatures. PLOS ONE, 6(12), e28535.
Freeman, B. G., & Class Freeman, A. M. (2014). Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proceedings of the National Academy of Sciences, 111(12), 4490–4494.
Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V., & Fitzpatrick, J. W. (2018). Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proceedings of the National Academy of Sciences, 115(47), 11982–11987.
Girish, K. S., & Srinivasan, U. (2022). Community science data provide evidence for upward elevational range shifts by Eastern Himalayan birds. Biotropica, 54(6), 1457–1465.
Global trends in biodiversity and ecosystem services from 1900 to 2050. (n.d.). ResearchGate. Retrieved April 21, 2025, from https://www.researchgate.net/publication/340676205_Global_trends_in_biodiversity_and_ecosystem_services_from_1900_to_2050
Gong, Z.-Y., Wang, C.-L., Dong, D.-D., Zhang, R., & Zhang, X. (2024). [Influence of climate change and human activities on grassland phenology in Anhui Province]. The Journal of Applied Ecology, 35(4), 1092–1100.
Gründemann, G. J., Zorzetto, E., van de Giesen, N., & van der Ent, R. J. (2023). Historical Shifts in Seasonality and Timing of Extreme Precipitation. Geophysical Research Letters, 50(24), e2023GL105200.
Hastie, T. J. and Tibshiranii, R. J. (1990) Generalized additive models. Chaoman and Hall, 49 London.
He, X., Liang, J., Zeng, G., Yuan, Y., & Li, X. (2019). The Effects of Interaction between Climate Change and Land-Use/Cover Change on Biodiversity-Related Ecosystem Services. Global Challenges, 3(9), 1800095.
Heegaard, E. (2002) The outer border and central border for species-environmental relationships estimated by non-parametric generalised addictive models. Ecological Modelling 157:131‒139.
Hitch, A. T., & Leberg, P. L. (2007). Breeding distributions of north American bird species moving north as a result of climate change. Conservation Biology: The Journal of the Society for Conservation Biology, 21(2), 534–539.
IPCC_AR6_WGI_Full_Report.pdf. (n.d.). Retrieved April 21, 2025, from https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf
IPCC_AR6_WGI_SPM_final.pdf. (n.d.). Retrieved April 21, 2025, from https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf
Jankowski, J. E., Robinson, S. K., & Levey, D. J. (2010). Squeezed at the top: Interspecific aggression may constrain elevational ranges in tropical birds. Ecology, 91(7), 1877–1884.
Kirchman, J. J., & Van Keuren, A. E. (2017). Altitudinal Range Shifts of Birds At the Southern Periphery of the Boreal Forest: 40 Years of Change In the Adirondack Mountains. The Wilson Journal of Ornithology, 129(4), 742–753.
Leyrer, Jutta & Bocher, Pierrick & Robin, Frédéric & DELAPORTE, PHILLIPE & GOULEVENT, CYRIL & JOYEUX, EMMANUEL & MEUNIER, FRANCIS & Piersma, Theunis. (2009). Northward migration of Afro-Siberian Knots Calidris canutus canutus : high variability in Red Knot numbers visiting staging sites on the French Atlantic coast, 1979–2009. Wader Study Group Bulletin. 116. 145–151.
Lin, H.-Y., Li, C.-F., Chen, T.-Y., Hsieh, C.-F., Wang, G., Wang, T., & Hu, J.-M. (2020). Climate-based approach for modeling the distribution of montane forest vegetation in Taiwan. Applied Vegetation Science, 23(2), 239–253.
Lin, L.-Y., Lin, C.-T., Chen, Y.-M., Cheng, C.-T., Li, H.-C., & Chen, W.-B. (2022). The Taiwan Climate Change Projection Information and Adaptation Knowledge Platform: A Decade of Climate Research. Water, 14(3), 358.
Masson-Delmotte, V., et al. (2021) Climate Change 2021. The Physical Science Basis, Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
Matthews, S. N., Iverson, L. R., Prasad, A. M., & Peters, M. P. (2011). Changes in potential habitat of 147 North American breeding bird species in response to redistribution of trees and climate following predicted climate change. Ecography. 34: 933-945., 34, 933–945.
Maggini, R., Lehmann, A., Kéry, M., Schmid, H., Beniston, M., Jenni, L. and Zbinden, N. (2011) Are Swiss birds tracking climate change?: detecting elevational shifts using response curve shapes. Ecological Modelling 222:21‒32.
Mizel, J. D., Schmidt, J. H., Mcintyre, C. L., & Roland, C. A. (2016). Rapidly shifting elevational distributions of passerine species parallel vegetation change in the subarctic. Ecosphere, 7(3), e01264.
Møller, A. P., Flensted-Jensen, E., Klarborg, K., Mardal, W., & Nielsen, J. T. (2010). Climate change affects the duration of the reproductive season in birds. Journal of Animal Ecology, 79(4), 777–784.
Neate-Clegg, M. H. C., Jones, S. E. I., Tobias, J. A., Newmark, W. D., & Şekercioǧlu, Ç. H. (2021). Ecological Correlates of Elevational Range Shifts in Tropical Birds. Frontiers in Ecology and Evolution, 9.
Neate-Clegg, M. H. C., O’Brien, T. G., Mulindahabi, F., & Şekercioğlu, Ç. H. (2020). A disconnect between upslope shifts and climate change in an Afrotropical bird community. Conservation Science and Practice, 2(11), e291.
Neate-Clegg, M. H. C., & Tingley, M. W. (2023). Building a mechanistic understanding of climate-driven elevational shifts in birds. PLOS Climate, 2(3), e0000174.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q. D., Dasqupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., … van Ypersele, J.-P. (2014). Climate change 2014 synthesis report. Contribution of working groups I, II, and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC.
Padoa-Schioppa, E., Baietto, M., Massa, R., & Bottoni, L. (2006). Bird communities as bioindicators: The focal species concept in agricultural landscapes. Ecological Indicators, 6(1), 83–93.
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42.
Popy, S., Bordignon, L., & Prodon, R. (2010). A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. Journal of Biogeography, 37(1), 57–67.
Reif, J., Prylová, K., Šizling, A. L., Vermouzek, Z., Šťastný, K., & Bejček, V. (2013). Changes in bird community composition in the Czech Republic from 1982 to 2004: Increasing biotic homogenization, impacts of warming climate, but no trend in species richness. Journal of Ornithology, 154(2), 359–370.
Reynolds, R. T., J. M. Scott, and R. A. Nussbaum. (1980). A variable circular-plot method for estimating bird numbers. Condor 82:309-313.
Rintala, J., Hario, M., Laursen, K., & Møller, A. P. (2022). Large-scale changes in marine and terrestrial environments drive the population dynamics of long-tailed ducks breeding in Siberia. Scientific Reports, 12, 12355.
Root, T. (1988). Environmental Factors Associated with Avian Distributional Boundaries. Journal of Biogeography, 15(3), 489–505.
Shelford, V. E. (1931). Some Concepts of Bioecology. Ecology, 12(3), 455–467.
Sam, K., & Koane, B. (2020). Biomass, abundances, and abundance and geographical range size relationship of birds along a rainforest elevational gradient in Papua New Guinea. PeerJ, 8, e9727.
Su, H. J. (1984a) Studies on the climate and vegetation types of the natural forests in Taiwan(I): analysis of the variations in climatic factors. Quarter Journal of Chinese Forestry 17(3):1‒14。
Su, H. J. (1984b) Studies on the climate and vegetation types of the natural forests in Taiwan(II): altitudinal vegetation zones in relation to temperature gradient. Quarter Journal of Chinese Forestry 17(4):57‒73.
Tayleur, C., Caplat, P., Massimino, D., Johnston, A., Jonzén, N., Smith, H. G., & Lindström, Å. (2015). Swedish birds are tracking temperature but not rainfall: Evidence from a decade of abundance changes. Global Ecology and Biogeography, 24(7), 859–872.
Tellería, J. L. (2020). Altitudinal shifts in forest birds in a Mediterranean mountain range: Causes and conservation prospects. Bird Conservation International, 30(4), 495–505.
Terborgh, J., & Weske, J. S. (1975). The Role of Competition in the Distribution of Andean Birds. Ecology, 56(3), 562–576.
Tingley, M. W., Koo, M. S., Moritz, C., Rush, A. C., & Beissinger, S. R. (2012). The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Global Change Biology, 18(11), 3279–3290.
van der Hoek, Y., Sirami, C., Faida, E., Musemakweli, V., & Tuyisingize, D. (2022). Elevational distribution of birds in an Eastern African montane environment as governed by temperature, precipitation, and habitat availability. Biotropica, 54(2), 334–345.
Wang, J., Guan, Y., Wu, L., Guan, X., Cai, W., Huang, J., Dong, W., & Zhang, B. (2021). Changing Lengths of the Four Seasons by Global Warming. Geophysical Research Letters, 48(6), e2020GL091753.
Zu, K., Chen, F., Li, Y., Shrestha, N., Fang, X., Ahmad, S., Nabi, G., & Wang, Z. (2024). Climate change impacts flowering phenology in Gongga Mountains, Southwest China. Plant Diversity, 46(6), 774–782.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98462-
dc.description.abstract在氣候暖化的趨勢下,生物往往會遷移至較高緯度或較高海拔地區。臺灣為一座具有明顯海拔梯度的島嶼,提供了理想場域以探討生物對氣候變遷的反應。近年玉山變化與全島趨勢不明,是當前急需釐清的空缺,因此本研究結合玉山地區的長期重複調查資料與全島範圍的臺灣繁殖鳥類大調查(BBS Taiwan)公民科學資料,評估臺灣繁殖鳥類海拔分布的時空變化趨勢。玉山地區的分析資料涵蓋1992年、2014年與2024年三次重複調查,針對中高海拔山區鳥種,計算其加權平均海拔及分布上下界,評估其分布變化。在47個樣站中,於2024年共記錄到69種繁殖鳥類、16,552隻次;相較於1992與2014年的兩次調查結果,2種鳥類消失、出現8種新記錄種,1992年與2024年、2014年與2024年中分別有49種、54種的鳥類可供海拔分布變遷比對。分析顯示,相較1992年,2024年物種海拔分布中心平均上升154.89公尺,其中69%的物種有顯著上升趨勢,11%呈現顯著下降;若以2014年為基準,平均上升83.78公尺,有50%的物種顯著上升,9%顯著下降。BBS Taiwan的資料分析則涵蓋2011年至2022年位於海拔1000公尺以上的調查樣點。篩選資料充足的物種後,共納入49種、128,420筆紀錄。結果顯示,這49個鳥種在2011年至2022年,平均海拔分布中心上升79.91公尺, 31%物種呈現顯著上升趨勢,另有6%顯著下降。與其他熱帶地區研究結果相比,臺灣中高海拔鳥類上升幅度更為明顯,顯示高海拔物種受到的氣候壓力更為強烈,並面臨更高的滅絕風險。整體而言,本研究證實繁殖鳥類在氣候變遷影響下已出現明顯的海拔上升趨勢,顯示臺灣生物分布在氣候變遷下正面臨顯著改變,極需持續監測與保育行動。zh_TW
dc.description.abstractGlobal warming is pushing species upslope or poleward. Taiwan’s steep elevational gradient makes it ideal for detecting such shifts. Recent changes in the Yushan region and island-wide trends remain unclear. This study integrated long-term survey data from Yushan (1992, 2014, 2024) and citizen science data from BBS Taiwan (2011–2022) to assess elevational shifts in breeding birds. In 2024, Yushan recorded 69 species and 16,552 individuals; 8 species were newly recorded, while 2 were no longer detected. Between 1992 and 2024, the elevational centers rose by an average of 154.89 meters, with 69% showing significant upward shifts and 11% significantly moving downslope. From 2014 to 2024, the average shift was 83.78 meters, with 50% of species significantly shifting upward and 9% significantly downward. The BBS Taiwan dataset included 49 species and 128,420 records from sites above 1,000 meters. Between 2011 and 2022, species’ elevational centers rose by an average of 79.91 meters, with 31% showing significant upward shifts and 6% significantly moving downslope. These results indicate that montane birds respond rapidly to climate change in Taiwan, with stronger upslope shifts than in other regions. These results prove ongoing climate-driven range shifts and underscore the need for long-term monitoring and conservation efforts.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:12:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:12:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員會審定書 i
謝辭 ii
摘要 iii
Abstract iv
目次 v
圖次 vii
表次 viii
前言 1
材料與方法 5
一、玉山現地調查資料 5
1. 研究區域 5
2. 研究方法 6
二、 公民科學資料 12
1. 研究區域 12
2. 研究方法 13
結果 16
一、 玉山現地調查資料 16
二、 臺灣繁殖鳥類大調查—公民科學資料 18
討論 20
一、 臺灣繁殖鳥類海拔分布變化趨勢 20
二、 玉山現地調查資料 20
1. 鳥種海拔分布變化的可能原因探討 20
2. 影響鳥類海拔分布變化的環境與生物因子 22
3. 物種分布變化與預期結果差異的可能原因 23
三、 臺灣繁殖鳥類大調查—公民科學資料 24
四、 與國際其他山區的相關研究結果比較 25
五、 氣候變遷下高海拔鳥類的保育意涵 27
結論 29
參考文獻 30
附錄一、玉山現地調查鳥種名錄 77
附錄二、2024年玉山調查中估計密度用有效察覺距離 81
附錄三、玉山現地調查鳥種於各樣站密度表(1992、2014、2024年) 85
-
dc.language.isozh_TW-
dc.subject氣候變遷zh_TW
dc.subject海拔分布zh_TW
dc.subject繁殖鳥類zh_TW
dc.subject公民科學zh_TW
dc.subjectcitizen scienceen
dc.subjectClimate Changeen
dc.subjectelevation range shiftsen
dc.subjectbreeding birdsen
dc.title以重複調查資料及公民科學資料探討氣候變遷對於臺灣繁殖鳥類分布影響zh_TW
dc.titleAltitudinal Range Shifts of Breeding Birds in Taiwan: A Synthesis of Long-Term Surveys and Citizen Science Dataen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許富雄;林瑞興;陳一菁;林政道zh_TW
dc.contributor.oralexamcommitteeFu-Hsiung Hsu;Ruey-Shing Lin;I-Ching Chen;Cheng-Tao Linen
dc.subject.keyword氣候變遷,海拔分布,繁殖鳥類,公民科學,zh_TW
dc.subject.keywordClimate Change,elevation range shifts,breeding birds,citizen science,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202503046-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-01-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2025-08-15-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved