Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98458
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭智馨zh_TW
dc.contributor.advisorChih-Hsin Chengen
dc.contributor.author沈樂恩zh_TW
dc.contributor.authorYao-En Shenen
dc.date.accessioned2025-08-14T16:11:53Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation中央氣象署。(2021)。氣候月平均。行政院交通部中央氣象署。查詢日期:2024/3/19,取自:https://www.cwa.gov.tw/V8/C/C/Statistics/monthlymean.html
中央氣象署。(n.d.)。臺灣分區雨量的季節氣候特徵。行政院交通部中央氣象署。查詢日期:2025/7/9,取自:https://www.cwa.gov.tw/Data/service/hottopic/14277057430.pdf
中央氣象署。(2024)。每日雨量。行政院交通部中央氣象署。查詢日期:2025/7/8,取自:https://www.cwa.gov.tw/V8/C/D/DailyPrecipitation.html
水利署。(2023)。地層下陷監測資訊整合服務系統。行政院經濟部水利署。查詢
日期:2023/11/14,取自:https://landsubsidence.wra.gov.tw/water_new/SubsidenceOverview/SubIndex/10010
王百祿、楊柏椿、張玉鑽、姚財寶。(1984)。鹽性鈉土淋洗之研究。臺灣糖業研究所研究彙報,105,13-24。
吳以健。(2020)。氣候變遷與氣候智慧型水稻生產之研究 (博士論文)。國立臺灣大學農藝學系。臺北。
林業及自然保育署。(2018)。台灣山林悠遊網 鰲鼓濕地森林園區。行政院農業部林業及自然保育署。查詢日期:2025/7/9,取自:https://recreation.forest.gov.tw/Forest/FP?typ_id=05001
林經偉。(2014)。農業灌溉水之認識與應用管理。臺南區農業專訊,88,12-15。
許健輝、張翊庭、黃蕙萱、劉滄棽、郭鴻裕。(2023)。利用地理資訊系統進行灌溉用水情境分析--以轉作玉米為例。技術服務,34,18-22。
農業試驗所。(2023)。台灣土壤資源與農地土地覆圖資瀏覽查詢系統。行政院農業部農業試驗所。查詢日期:2023/9/29,取自:http://soilsurvey.tari.gov.tw/SOA/index.aspx
葉信富、李振誥、陳忠偉、張格綸。(2008)。評估蒸發皿係數以推估台灣南部地區蒸發散量之研究。農業工程學報,54,27-35。
楊純明。(2013)。氣候智能型農業生產─從環境親和調適評估機會與挑戰。作物、環境與生物資訊,10,217-228。查詢日期:2025/7/9,取自:https://scholars.tari.gov.tw/handle/123456789/3411
嘉義市政府。(2001)。嘉義市觀光發展整體規劃:第二篇 現況分析,第一章 基地環境分 (頁2-1-2-13)。查詢日期:2025/7/9,取自:https://icmp-ws.chiayi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvMzk5L1JlbEZpbGUvOTY2Ni8zNzgzMzgvMjAwOTAyMDUxNzQ1MDg0LnBkZg%3d%3d&n=MjAwOTAyMDUxNzQ1MDg0LnBkZg%3d%3d
臺灣省立中興大學農學院土壤學系。(1971)。嘉義縣土壤調查報告。農業部農業試驗所土壤資料供應查詢平台。查詢日期:2025/7/9,取自:https://tssurgo.tari.gov.tw/Tssurgo/Search/Detail?ID=20161121122200
環境部。(2023)。全國環境水質監測資訊網。行政院環境部。查詢日期:2023/11/15,取自:https://wq.moenv.gov.tw/EWQP/zh/ConService/DownLoad/HistoryData.aspx
魏子穎。(2024)。以物理分餾與穩定同位素分析檢視臺灣平地造林之土壤有機碳動態 (碩士論文)。國立臺灣大學森林環境暨資源學系。臺北。
Abd El-Hamid, H. T., Alshehri, F., El-Zeiny, A. M., and Nour-Eldin, H. (2023). Remote sensing and statistical analyses for exploration and prediction of soil salinity in a vulnerable area to seawater intrusion. Marine Pollution Bulletin, 187, 114555.
Adelana, S. M., Dresel, P. E., Hekmeijer, P., Zydor, H., Webb, J. A., Reynolds, M., and Ryan, M. (2015). A comparison of streamflow, salt and water balances in adjacent cropland and forest catchments in south‐western Victoria, Australia. Hydrological Processes, 29, 1630-1643.
Alfarrah, N., and Walraevens, K. (2018). Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water, 10, 143.
Amoakwah, E., Lucas, S. T., Didenko, N. A., Rahman, M. A., and Islam, K. R. (2022). Impact of deforestation and temporal land-use change on soil organic carbon storage, quality, and lability. PLoS One, 17, e0263205.
Ardón, M., Helton, A. M., and Bernhardt, E. S. (2018). Salinity effects on greenhouse gas emissions from wetland soils are contingent upon hydrologic setting: a microcosm experiment. Biogeochemistry, 140, 217-232.
Arslan, H., and Demir, Y. (2013). Impacts of seawater intrusion on soil salinity and alkalinity in Bafra Plain, Turkey. Environmental Monitoring and Assessment, 185, 1027-1040.
Barbier, E. B. (2019). The value of coastal wetland ecosystem services. In G. M. E. Perillo, E. Wolanski, D. R. Cahoon, and C. S. Hopkinson (Eds.), Coastal Wetlands (pp. 947–964). Elsevier. Amsterdam, Netherlands.
Barry, L. E., Yao, R. T., Harrison, D. R., Paragahawewa, U. H., and Pannell, D. J. (2014). Enhancing ecosystem services through afforestation: How policy can help. Land Use Policy, 39, 135-145.
Birati, S., Amanipoor, H., and Battaleb-Looie, S. (2025). Investigation of the impact of seawater intrusion on the agricultural land quality along river margins. Applied Water Science, 15, 1-21.
Bronick, C. J., and Lal, R. (2005). Soil structure and management: a review. Geoderma, 124, 3-22.
Seo, B. S., Jeong, Y. J., Baek, N. R., Park, H. J., Yang, H. I., Park, S. I., and Choi, W. J. (2022). Soil texture affects the conversion factor of electrical conductivity from 1:5 soil-water to saturated paste extracts. Pedosphere, 32, 905-915.
Burt, C. M., and Isbell, B. (2005). Leaching of accumulated soil salinity under drip irrigation. Transactions of the ASAE, 48, 2115-2121.
Cantelon, J. A., Guimond, J. A., Robinson, C. E., Michael, H. A., and Kurylyk, B. L. (2022). Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: A review. Water Resources Research, 58, e2022WR032614.
Cazenave, A., and Cozannet, G. L. (2013). Sea level rise and its coastal impacts. Earth's Future, 2, 15-34.
Chesworth, W., Macías Vázquez, F., and Camps Arbestain, M. (2008). Alkaline soils. In W. Chesworth (Ed.), Encyclopedia of Earth Sciences Series (pp. 37-39). Springer. Dordrecht, Netherlands.
Cheng, C. H., Huang, Y. H., Menyailo, O. V., and Chen, C. T. (2016). Stand development and aboveground biomass carbon accumulation with cropland afforestation in Taiwan. Taiwan Journal of Forest Science, 31, 105-118.
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., and Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17, 1111.
Cox, C., Jin, L., Ganjegunte, G., Borrok, D., Lougheed, V., and Ma, L. (2018). Soil quality changes due to flood irrigation in agricultural fields along the Rio Grande in western Texas. Applied Geochemistry, 90, 87-100.
Cunha, G. M., Gama-Rodrigues, A. C., Gama-Rodrigues, E. F., and Moreira, G. R. (2019). Nutrient cycling in Corymbia citriodora in the State of Rio de Janeiro, Brazil. Floresta e Ambiente, 26, e20170204.
Curtin, D., Steppuhn, H., and Selles, F. (1994). Effects of magnesium on cation selectivity and structural stability of sodic soils. Soil Science Society of America Journal, 58, 730-737.
Davis, J. A., and Froend, R. J. W. E. (1999). Loss and degradation of wetlands in southwestern Australia: underlying causes, consequences and solutions. Wetlands Ecology and Management, 7, 13-23.
Ding, Z., Koriem, M. A., Ibrahim, S. M., Antar, A. S., Ewis, M. A., He, Z., and Kheir, A. M. (2020). Seawater intrusion impacts on groundwater and soil quality in the northern part of the Nile Delta, Egypt. Environmental Earth Sciences, 79, 1-11.
Dong, X., Wang, J., Zhang, X., Dang, H., Singh, B. P., Liu, X., and Sun, H. (2022). Long-term saline water irrigation decreased soil organic carbon and inorganic carbon contents. Agricultural Water Management, 270, 107760.
Doran, J. C., and Turnbull, J. W. (Eds.). (1997). Australian trees and shrubs: Species for land rehabilitation and farm planting in the tropics (p. 314). Australian Centre for International Agricultural Research (ACIAR).
Dutta, R. K., and Agrawal, M. (2001). Litterfall, litter decomposition and nutrient release in five exotic plant species planted on coal mine spoils. Pedobiologia, 45, 298-312.
El-Juhany, L. I., Aref, I. M., and El-Wakeel, A. O. (2002). Evaluation of above-ground biomass and stem volume of three Casuarina species grown in the central region of Saudi Arabia. Emirates Journal of Agricultural Sciences, 14, 8-13.
El Shinawi, A., Kuriqi, A., Zelenakova, M., Vranayova, Z., and Abd-Elaty, I. (2022). Land subsidence and environmental threats in coastal aquifers under sea level rise and over-pumping stress. Journal of Hydrology, 608, 127607.
Ersahin, S., Gunal, H., Kutlu, T., Yetgin, B., and Coban, S. (2006). Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma, 136, 588-597.
Eswar, D., Karuppusamy, R., and Chellamuthu, S. (2021). Drivers of soil salinity and their correlation with climate change. Current Opinion in Environmental Sustainability, 50, 310-318.
Food and Agriculture Organization of the United Nations. (2022). Standard operating procedure for cation exchange capacity and exchangeable bases: 1N ammonium acetate, pH 7.0 method. FAO. Rome, Italy.
Freibauer, A., Rounsevell, M. D., Smith, P., and Verhagen, J. (2004). Carbon sequestration in the agricultural soils of Europe. Geoderma, 122, 1-23.
Gharaibeh, M. A., Albalasmeh, A. A., and El Hanandeh, A. (2021). Estimation of saturated paste electrical conductivity using three modelling approaches: Traditional dilution extracts; saturation percentage and artificial neural networks. Catena, 200, 105141.
Ghorab, S. A., Ismail, M. F., and Abd El-Lah, S. A. (2017). Growth rate, basal area and volume of Corymbia citriodora and Cupressus sempervirens irrigated with treated wastewater at Serabium Forest. Egyptian Journal of Agricultural Research, 95, 1145-1157.
Gibson, N., McNulty, S., Miller, C., Gavazzi, M., Worley, E., Keesee, D., and Hollinger, D. (2021). Identification, mitigation, and adaptation to salinization on working lands in the US Southeast. Forest Service, U.S. Department of Agriculture, Southern Research Station.
Grassini, P., Yang, H., Irmak, S., Thorburn, J., Burr, C., and Cassman, K. G. (2011). High-yield irrigated maize in the Western US Corn Belt: II. Irrigation management and crop water productivity. Field Crops Research, 120, 133-141.
Groenendyk, D. G., Ferre, T. P., Thorp, K. R., and Rice, A. K. (2015). Hydrologic-process-based soil texture classifications for improved visualization of landscape function. PloS one, 10, e0131299.
Hailegnaw, N. S., Bayabil, H. K., Li, Y. C., and Gao, B. (2024). Seawater flooding of calcareous soils: Implications for trace and alkaline metals mobility. Science of The Total Environment, 927, 172210.
Hamed, M. H., and Khalafallh, M. Y. (2017). Available nutrients and some soil properties of El-Qasr soils, El-Dakhla Oasis, Egypt. International Journal of Environment, Agriculture and Biotechnology, 2, 239023.
Havlin, J. L., Beaton, J. D., Tisdale, S. L., and Nelson, W. L. (2005). Chapter 3 Soil acidity and alkalinity. In Soil fertility and fertilizers: An introduction to nutrient management (pp. 45-96). Pearson. Upper Saddle River, NJ, USA.
Haywood, B. J., Hayes, M. P., White, J. R., and Cook, R. L. (2020). Potential fate of wetland soil carbon in a deltaic coastal wetland subjected to high relative sea level rise. Science of the Total Environment, 711, 135185.
Hayyat, M. U., Nawaz, R., Siddiq, Z., Shakoor, M. B., Mushtaq, M., Ahmad, S. R., Ali, S., Hussain, A., Irshad, M. A., Alsahli, A. A., and Alyemeni, M. N. (2021). Investigation of lithium application and effect of organic matter on soil health. Sustainability, 13, 1705.
Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., Hopfensperger, K. N., Lamers, L. P. M., and Gell, P. (2015). A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6, 206.
Howari, F. M., Goodell, P. C., and Miyamoto, S. (2002). Spectral properties of salt crusts formed on saline soils. Journal of Environmental Quality, 31, 1453-1461.
Huynh, T., Lee, D. J., Lewis, T., and Applegate, G. (2023). Effects of site characteristics and stand management on biomass and carbon sequestration in spotted gum (Corymbia citriodora subsp. variegata) plantations. Forest Ecology and Management, 529, 120725.
Iqbal, V., Velmurugan, A., Balaji, S., and Swarnan, T. P. (2018). Effect of Seawater intrusion on soil and water quality parameter in vulnerable area of South Andaman Island, India. Journal of the Andaman Science Association, 23, 119-123.
Intergovernmental Panel on Climate Change (IPCC). (2006). 2006 IPCC guidelines for national greenhouse gas inventories. Volume 4: Agriculture, forestry and other land use. Institute for Global Environmental Strategies (IGES). Hayama, Japan. https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
Intergovernmental Panel on Climate Change (IPCC). (2023). Climate change 2023: Synthesis report. Contribution of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge, United Kingdom. https://www.ipcc.ch/report/ar6/syr/
Kargas, G., Londra, P., and Sotirakoglou, K. (2022). The Effect of Soil Texture on the Conversion Factor of 1:5 Soil/Water Extract Electrical Conductivity (EC1:5) to Soil Saturated Paste Extract Electrical Conductivity (ECe). Water, 14, 642.
Khanom, T. (2016). Effect of salinity on food security in the context of interior coast of Bangladesh. Ocean & Coastal Management, 130, 205-212.
Khorsandi, F., and Yazdi, F. A. (2011). Estimation of saturated paste extracts’ electrical conductivity from 1: 5 soil/water suspension and gypsum. Communications in Soil Science and Plant Analysis, 42, 315-321.
Khosla, B. K., Gupta, R. K., and Abrol, I. P. (1979). Salt leaching and the effect of gypsum application in a saline-sodic soil. Agricultural Water Management, 2, 193-202.
Kim, J., Kang, Y., Kim, D., Son, S., and Kim, E. J. (2024). Carbon storage and sequestration analysis by urban park grid using i-tree eco and drone-based modeling. Forests, 15, 683.
Kirwan, M. L., Michael, H. A., Gedan, K. B., Tully, K. L., Fagherazzi, S., McDowell, N. G., Molino, G. D., Pratt, D., Reay, W. G., and Stotts, S. (2025). Feedbacks regulating the salinization of coastal landscapes. Annual Review of Marine Science, 17, 461-484.
Klemas, V. (2013). Remote sensing of coastal wetland biomass: An overview. Journal of Coastal Research, 29, 1016-1028.
Kumar, A., Bhattacharya, T., Mukherjee, S., and Sarkar, B. (2022). A perspective on biochar for repairing damages in the soil–plant system caused by climate change-driven extreme weather events. Biochar, 4, 22.
Li, Y. Q., Chai, Y. H., Wang, X. S., Huang, L. Y., Luo, X. M., Qiu, C., Liu, Q. H., and Guan, X. Y. (2021). Bacterial community in saline cropland soil on the Tibetan plateau: Responding to salinization while resisting extreme environments. BMC Microbiology, 21, 1-14.
Lim, S. S., Yang, H. I., Park, H. J., Park, S. I., Seo, B. S., Lee, K. S., Lee, S. H., Lee, S. M., Kim, H. Y., Ryu, J. H., Kwak, J. H., and Choi, W. J. (2020). Land-use management for sustainable rice production and carbon sequestration in reclaimed coastal tideland soils of South Korea: A review. Soil Science and Plant Nutrition, 66, 60-75.
Maas, E. V., Hoffman, G. J., Chaba, G. D., Poss, J. A., and Shannon, M. C. (1983). Salt sensitivity of corn at various growth stages. Irrigation Science, 4, 45-57.
Machado, R. M. A., and Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3, 30.
Marton, J. M., Herbert, E. R., and Craft, C. B. (2012). Effects of salinity on denitrification and greenhouse gas production from laboratory-incubated tidal forest soils. Wetlands, 32, 347-357.
Mazhar, S., Pellegrini, E., Contin, M., Bravo, C., and De Nobili, M. (2022). Impacts of salinization caused by sea level rise on the biological processes of coastal soils-A review. Frontiers in Environmental Science, 1212.
McCauley, A., Jones, C., and Jacobsen, J. (2009). Soil pH and organic matter. Nutrient Management Module, 8, 1-12.
Mirlas, V., Anker, Y., Aizenkod, A., and Goldshleger, N. (2022). Irrigation quality and management determine salinization in Israeli olive orchards. Geoscientific Model Development, 15, 129-143.
Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., and Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736.
Nordio, G., and Fagherazzi, S. (2024). Evapotranspiration and rainfall effects on post‐storm salinization of coastal forests: Soil characteristics as important factor for salt‐intolerant tree survival. Water Resources Research, 60, e2024WR037907.
Ohenhen, L. O., Shirzaei, M., Ojha, C., and Kirwan, M. L. (2023). Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion. Nature Communications, 14, 2038.
Okur, B., and Örçen, N. (2020). Chapter 12 Soil salinization and climate change. In M. N. V. Prasad and M. Pietrzykowski (Eds.), Climate change and soil interactions (pp. 331–350). Elsevier. Amsterdam, Netherlands.
Paul, K. I., Cunningham, S. C., England, J. R., Roxburgh, S. H., Preece, N. D., Lewis, T., Brooksbank, K., Crawford, D. F., and Polglase, P. J. (2016). Managing reforestation to sequester carbon, increase biodiversity potential and minimize loss of agricultural land. Land Use Policy, 51, 135-149.
Peel, M. C., McMahon, T. A., and Finlayson, B. L. (2010). Vegetation impact on mean annual evapotranspiration at a global catchment scale. Water Resources Research, 46, W09508.
Redelstein, R., Dinter, T., Hertel, D., and Leuschner, C. (2018). Effects of inundation, nutrient availability and plant species diversity on fine root mass and morphology across a saltmarsh flooding gradient. Frontiers in Plant Science, 9, 98.
Renaud, F. G., Le, T. T. H., Lindener, C., Guong, V. T., and Sebesvari, Z. (2015). Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre Province, Mekong Delta. Climatic Change, 133, 69-84.
Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37, 613-620.
Ribeiro-Barros, A. I., Pawlowski, K., and Ramalho, J. C. (2022). Mechanisms of salt stress tolerance in Casuarina: A review of recent research. Journal of Forest Research, 27, 113-116.
Riley, J. P., and Tongudai, M. (1967). The major cation/chlorinity ratios in sea water. Chemical Geology, 2, 263-269.
Ruehlmann, J., and Körschens, M. (2009). Calculating the effect of soil organic matter concentration on soil bulk density. Soil Science Society of America Journal, 73, 876-885.
Schweizer, S. A., Mueller, C. W., Höschen, C., Ivanov, P., and Kögel-Knabner, I. (2021). The role of clay content and mineral surface area for soil organic carbon storage in an arable toposequence. Biogeochemistry, 156, 401-420.
Setia, R., Gottschalk, P., Smith, P., Marschner, P., Baldock, J., Setia, D., and Smith, J. (2013). Soil salinity decreases global soil organic carbon stocks. Science of The Total Environment, 465, 267-272.
Singh, K. (2016). Microbial and enzyme activities of saline and sodic soils. Land Degradation & Development, 27, 706-718.
Shahid, S. A., Zaman, M., and Heng, L. (2018). Chapter3 Salinity and sodicity adaptation and mitigation options. In M. Zaman, S. A. Shahid, and L. Heng (Eds.), Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 55-89). Springer Nature. Cham, Swistzerland.
Shete, M., Rutten, M., Schoneveld, G.C., and Zewude, E. (2016). Land-use changes by large-scale plantations and their effects on soil organic carbon, micronutrients and bulk density: empirical evidence from Ethiopia. Agriculture and Human Values, 33, 689-704.
Smart, L. S., Taillie, P. J., Poulter, B., Vukomanovic, J., Singh, K. K., Swenson, J. J., Mitasova, H., Smith, J. W., and Meentemeyer, R. K. (2020). Aboveground carbon loss associated with the spread of ghost forests as sea levels rise. Environmental Research Letters, 15, 104028.
Sonmez, S., Buyuktas, D., Okturen, F., Citak, S. (2008). Assessment of different soil to water ratios (1:1, 1:2.5, 1:5) in soil salinity studies. Geoderma, 144, 361-369.
Spencer, T., Schuerch, M., Nicholls, R. J., Hinkel, J., Lincke, D., Vafeidis, A. T., Reef, R., McFadden, L., and Brown, S. (2016). Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Global and Planetary Change, 139, 15-30.
Sun, D., and Dickinson, G. R. (1995). Survival and growth responses of a number of Australian tree species planted on a saline site in tropical north Australia. Journal of Applied Ecology, 32, 817-826.
Teixeira, M. C., Vitória, A. P., de Rezende, C. E., de Almeida, M. G., and Nardoto, G. B. (2020). Consequences of removal of exotic species (eucalyptus) on carbon and nitrogen cycles in the soil-plant system in a secondary tropical Atlantic forest in Brazil with a dual-isotope approach. PeerJ, 8, e9222.
Tomar, O. S., and Gupta, R. K. (2002). Relative performance of some accessions of Casuarina spp. and silvicultural practices on saline waterlogged soils in semiarid conditions. Arid Land Research and Management, 16, 177-184.
Ullman, J. L. (2013). Soil salinity in agricultural systems: The basics. Strategies for minimizing salinity problems and optimizing crop production in-service training, Hastings, FL. Agricultural and Biological Engineering, University of Florida, Gainesville, USA. Accessed July 11, 2025. From: https://hos.ifas.ufl.edu/media/hosifasufledu/documents/pdf/in-service-training/ist30688/IST30688---7.pdf
van de Wal, R., Melet, A., Bellafiore, D., Camus, P., Ferrarin, C., Oude Essink, G., Haigh, I. D., Lionello, P., Luijendijk, A., Toimil, A., Staneva, J., and Vousdoukas, M. (2024). Sea level rise in Europe: Impacts and consequences (Chapter 5). In B. van den Hurk, N. Pinardi, T. Kiefer, K. Larkin, P. Manderscheid, and K. Richter (Eds.), Sea level rise in Europe: 1st assessment report of the Knowledge Hub on Sea Level Rise (3-SLRE1). Copernicus Publications. Göttingen, Germany.
Verstraeten, W. W., Muys, B., Feyen, J., Veroustraete, F., Minnaert, M., Meiresonne, L., and De Schrijver, A. (2005). Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE. Hydrology and Earth System Sciences, 9, 225-241.
Wang, Y., and Li, B. (2022). Dynamics arising from the impact of large‐scale afforestation on ecosystem services. Land Degradation & Development, 33, 3186-3198.
Wang, Z., Zhao, G., Gao, M., and Chang, C. (2017). Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China. Environmental Monitoring and Assessment, 189, 1-12.
Wang, X., Liu, Z., Xiong, K., Li, Y., and Cheng, K. (2022). Soil organic carbon distribution and its response to soil erosion based on EEM-PARAFAC and stable carbon isotope, a field study in the rocky desertification control of South China Karst. International Journal of Environmental Research and Public Health, 19, 3210.
Wendelberger, K. S., and Richards, J. H. (2017). Halophytes can salinize soil when competing with glycophytes, intensifying effects of sea level rise in coastal communities. Oecologia, 184, 729-737.
White, E., and Kaplan, D. (2017). Restore or retreat? Saltwater intrusion and water management in coastal wetlands. Ecosystem Health and Sustainability, 3, e01258.
Wong, V. N., Greene, R. S. B., Dalal, R. C., and Murphy, B. W. (2010). Soil carbon dynamics in saline and sodic soils: a review. Soil Use and Management, 26, 2-11.
Xiao, C., Gong, Y., Pei, X., Chen, H., Li, S., Lu, C., Chen, L., Zheng, X., Zheng, J., and Yan, X. (2024). Impacts of Land-Use Change from Primary Forest to Cropland on the Storage of Soil Organic Carbon. Applied Sciences, 14, 4736.
Xing, G., Wang, X., Jiang, Y., Yang, H., Mai, S., Xu, W., Hou, E., Huang, X., Yang, Q., Liu, W., and Long, W. (2023). Variations and influencing factors of soil organic carbon during the tropical forest succession from plantation to secondary and old–growth forest. Frontiers in Ecology and Evolution, 10, 1104369.
Xu, Z., Zuo, L., Zhang, Y., Huang, R., and Li, L. (2022). Is allelochemical synthesis in Casuarina equisetifolia plantation related to litter microorganisms?. Frontiers in Plant Science, 13, 1022984.
Yang, C., Li, J., and Zhang, Y. (2019). Soil aggregates indirectly influence litter carbon storage and release through soil pH in the highly alkaline soils of north China. PeerJ, 7, e7949.
Yao, Y., Chen, J., Li, F., Sun, M., Yang, X., Wang, G., Ma, J., and Sun, W. (2022). Exchangeable Ca2+ content and soil aggregate stability control the soil organic carbon content in degraded Horqin grassland. Ecological Indicators, 134, 108507.
Yin, C. Y., Zhao, J., Chen, X. B., Li, L. J., Liu, H., and Hu, Q. L. (2022). Desalination characteristics and efficiency of high saline soil leached by brackish water and Yellow River water. Agricultural Water Management, 263, 107461.
Zahran, H. H. (1997). Diversity, adaptation and activity of the bacterial flora in saline environments. Biology and Fertility of Soils, 25, 211-223.
Zhang, Y., Hou, K., Qian, H., Gao, Y., Fang, Y., Xiao, S., Tang, S., Zhang, Q., Qu, W., and Ren, W. (2022). Characterization of soil salinization and its driving factors in a typical irrigation area of Northwest China. Science of the Total Environment, 837, 155808.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98458-
dc.description.abstract隨著氣候變遷與全球暖化日益嚴重,它們對自然與人類生存的影響也日漸顯著。其中,海平面上升與海水入侵已經造成沿海環境劣化的危機,包含土壤鹽化、海岸侵蝕,以及糧食安全等,對沿海的生態與人類生命財產生存帶來威脅。本研究以鰲鼓濕地森林園區及其鄰近地區為研究對象,旨在探討海水入侵與地層下陷後,海岸森林及農地土壤鹽化的程度、兩者的差異,還有評估生態系碳儲存的能力。鰲鼓濕地森林園區為60年前海埔新生地,後因海水入侵鹽化而逐漸廢耕。本研究將此區域分為五個樣區,由沿海至內陸大致上分別為鰲鼓濕地西側(AG West)、鰲鼓濕地東側(AG East)、笨港港口宮(BG)、港墘(GC),以及高鐵嘉義站(HSR),並在每個樣區中選擇造林地與持續耕作之農地採集土壤。每個樣區土壤採集由淺至深分為0-20 cm、20-40 cm、40-60 cm、60-80 cm、80-100 cm ,除了高鐵樣區由於土壤質地較黏,所以採樣深度僅至20-40 cm)。將土壤依照分層深度進行基本性質與鹽分含量化學分析,包括飽和水抽出電導度(saturated water extract electrical conductivity, ECe)、交換性鈉飽和度(exchangeable sodium percentage, ESP),以及土壤有機碳(soil organic carbon)濃度,此外也使用樣區表層土壤種植玉米進行盆栽試驗。
研究結果顯示,鰲鼓濕地森林園區及鄰近地區之林地、農地土壤pH皆屬於鹼化範圍,與土壤母質和海水入侵有關。在海岸森林土壤方面,在水平方向上以最靠海岸的AG West 及AG East的鹽化程度最嚴重,屬於強烈鹽化(ECe大於16 dS m-1)其次是BG和GC,屬於中度鹽化(ECe:4.1-8.0 dS m-1),鹽化程度最輕的樣區則是最內陸的HSR,屬於無鹽化土壤;垂直方向上,則是在大部分樣區中呈現下層土壤鹽化較嚴重的現象,海岸林土壤ECe明顯超過多數植物之耐鹽極限,其土壤交換性鈉含量和ESP等指標也都普遍呈現較靠海較高,顯示此區域的海水入侵方向有由沿海向內陸、由下層往上層的趨勢。農地土壤方面,所有樣區的土壤都呈現無鹽化的狀態,顯示人為控管、洗鹽措施,以及土地利用型差異等,會導致土壤鹽化程度的不同,並且人為干預自然環境,在某種程度上能有效減緩土壤因海水入侵而鹽化的現象。玉米盆栽試驗也反映出類似的結果與相關趨勢,造林與農地土壤所種植的玉米地上部高度、生物量皆是越內陸越高,且相同樣區中,農地土壤的玉米地上部高度和生物量普遍較造林土壤的玉米高。代表鰲鼓濕地土壤鹽化的程度,對於該區常見作物生長會產生明顯的影響。土壤有機碳儲存方面,林地土壤的有機碳濃度雖然較農地土壤高,但其總體密度卻較農地土壤低,因此一來一往下,兩者整體地下部有機碳儲存並無明顯差異。不過,林地生態系除了土壤碳儲存外,再加上林木生物量以及枯落物層的碳儲存後,整體碳儲存會明顯高於農地生態系,約可多出72.5-187.0 ton C ha-1,顯示土地利用對於生態系碳吸存能力的影響巨大。
綜合以上,由本研究結果可得知,在海水入侵、土壤鹽化的情境下,沿海土地利用呈現兩難的情況。若以造林的方式利用鹽化土壤,可得到碳吸存與生物多樣性等生態系統功能的服務,但卻無法阻止土壤鹽化,而犧牲糧食生產的可能;但是另一方面,若持續以洗鹽與灌溉的方式維持土壤於無鹽化的狀態,可以確保可耕地的利用與糧食安全,卻會放棄森林可能提供的各樣生態系統功能。如此的兩難困境,是未來沿海土地管理者需要面對與抉擇的重要議題。
zh_TW
dc.description.abstractAs climate change and global warming intensify, their impacts on natural and human systems are becoming increasingly evident. Among these, sea-level rise and seawater intrusion pose serious threats to coastal environments, leading to ecosystem shifts, soil erosion, and soil salinization. This study investigated the forest and cropland soils of the Aogu Wetland Forest Park in southwestern Taiwan to assess their salinization status, differences between land-use types, and ecosystem carbon storage.
Five study sites were selected along a coastal–inland gradient: the west side of Aogu Wetland (AG West, nearest to the coast), the east side of Aogu Wetland (AG East), Bengang-Kangkao Temple (BG), Gangcian (GC), and the Taiwan High-Speed Rail Chiayi Station (HSR, farthest inland). At each site, soil samples were collected from both afforested land and croplands at depths of 0-20, 20-40, 40-60, 60-80, and 80-100 cm, except for the HSR site where clayey conditions limited sampling to 20-40 cm. Soil physical and chemical properties, including electrical conductivity (EC), exchangeable sodium percentage (ESP), and soil organic carbon (SOC) content, were analyzed. Additionally, a maize pot experiment was conducted in a greenhouse to evaluate the impacts of soil salinity on plant growth.
The results indicated that forest soils in AG West and AG East were strongly saline (ECe greater than 16 dS m-1), while BG and GC showed moderate salinity (ECe:4.1-8.0 dS m-1), with salinity generally increasing with depth, suggesting inland and upward seawater intrusion. Cropland soils, however, showed minimal to no salinization, indicating that irrigation and management practices can effectively mitigate soil salinity. The pot experiment supported these findings, as maize grown in saline coastal forest soils exhibited reduced height and biomass compared to maize grown in inland or cropland soils. Furthermore, although forest soils had higher organic carbon concentrations than cropland soils, their lower bulk density resulted in similar soil organic carbon storage overall. Yet, the total ecosystem carbon storage of forests in this study was significantly higher than that of cropland ecosystem due to contributions from tree biomass and litter layers. Compared to croplands, the forest ecosystem in this study stores 72.5 to 187.0 ton C ha-1, highlighting the significant influence of land use on ecosystem carbon sequestration potential.
In conclusion, while coastal soils are vulnerable to salinization under seawater intrusion, active management can reduce this issue to an extent. These results suggest a trade-off in managing coastal saline soils: whether to prioritize afforestation for enhanced ecosystem services, such as carbon sequestration and biodiversity, at the cost of reduced agricultural productivity, or to favor agricultural land management to secure food production while compromising some ecosystem functions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:11:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:11:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsMaster’s thesis acceptance certificate…………………………………………………i
誌謝…………………………………………………………………………………ii
摘要…………………………………………………………………………………iii
Abstract………………………………………………………………v
目次Table of Contents ………………………………………………………………vii
圖次Figure Index……………………………………………………………………x
表次Table Index……………………………………………………………………xi
Chapter 1 Introduction………………………………………………………………...1
1.1 Global Warming, Climate Change, and Sea Level Rise………………………1
1.2 Soil Salinization ………………………………………………………………2
1.2.1 Types of Soil Salinization……………………………………………...2
1.2.2 Types of Land Use…………………………………...............................4
1.3 Examples of Seawater Intrusion into Groundwater Systems and Soil…………5
1.4 Impacts of Coastal Ecosystem Service by Soil Salinization…………………...7
1.5 Mitigation and Adaptation of Soil Salinization………………………………12
1.6 Indicators of Soil Salinity and Sodicity………………………………………14
1.7 Objectives……………………………………………………………………16
Chapter 2 Materials and Methods…………………………………………………….17
2.1 Study Sites…………………………………………………………………...17
2.2 Soil Sampling and Analyses………………………………………………….20
2.3 Analyze Methods…………………………………………………………….22
2.3.1 Soil Properties………………………………………………………...22
2.3.2 SEM-EDS Analysis…………………………………………………...24
2.3.3 Pot Experiment………………………………………………………..25
2.3.4 Ecosystem Carbon Storage……………………………………………26
2.3.5 Statistical Analysis……………………………………………………27
Chapter 3 Results…………………………………………………………………….29
3.1 Basic Properties of Soil from Aogu Wetland………………………………..29
3.1.1 Bulk Density…………………………………………………………..29
3.1.2 Soil pH………………………………………………………..............29
3.1.3 Soil Texture…………………………………………………………...29
3.1.4 Cation Exchange Capacity (CEC)…………………………………….29
3.1.5 Soil Organic Carbon (SOC)…………………………………………..30
3.2 Salinity Properties of Soil from Aogu Wetland……………………………...33
3.2.1 Electrical Conductivities (EC) and Conversion Factor (CF)…………33
3.2.2 Exchangeable Cations………………………………………………...36
3.2.3 Exchangeable Sodium Percentage (ESP)……………………………..40
3.2.4 Relationship between Different Salinity Indicators…………………..47
3.3 SEM-EDS Images……………………………………………………………47
3.4 Pot Experiment………………………………………………………………51
3.5 Ecosystem Carbon Storage…………………………………………………..53
Chapter 4 Discussion………………………………………………………………...56
4.1 Salinization Trend……………………………………………………………56
4.1.1 Soil pH………………………………………………………………...56
4.1.2 EC and CF…………………………………………………………….56
4.1.3 Exchangeable Na+ and ESP…………………………………………...57
4.2 Soil Salinity Drivers………………………………………………………….59
4.2.1 Irrigation………………………………………………………………60
4.2.2 Evapotranspiration and Land-Use Difference………………………...61
4.2.3 Land Subsidence and Sea Level Rise…………………………………62
4.3 Evidence of the Maize Pot Experiment……………………………………...63
4.4 Ecosystem Carbon Storage…………………………………………………..65
4.4.1 Tree Biomass and Litter Layer………………………………………..65
4.4.2 Soil Organic Carbon…………………………………………………..66
4.5 Trade-off between Ecosystem Carbon Storage and Usable Cropland………68
Chapter 5 Conclusion………………………………………………………………..71
References…………………………………………………………………………...74
Appendix…………………………………………………………………………….93
-
dc.language.isoen-
dc.subject氣候變遷zh_TW
dc.subject海水入侵zh_TW
dc.subject土壤鹽化zh_TW
dc.subject海岸造林zh_TW
dc.subject生態系碳儲存zh_TW
dc.subjectecosystem carbon storageen
dc.subjectclimate changeen
dc.subjectcoastal afforestationen
dc.subjectsea water intrusionen
dc.subjectsoil salinizationen
dc.title臺灣西南部鰲鼓海岸溼地造林及農地土壤鹽化與生態系碳吸存之權衡zh_TW
dc.titleTrade-offs between Soil Salinization and Ecosystem Carbon Sequestration in Afforested and Crop Lands of Aogu Coastal Wetland, Southwest Taiwanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee江博能;陳尊賢zh_TW
dc.contributor.oralexamcommitteePo-Neng Chiang;Zueng-Sang Chenen
dc.subject.keyword氣候變遷,海水入侵,土壤鹽化,海岸造林,生態系碳儲存,zh_TW
dc.subject.keywordclimate change,coastal afforestation,sea water intrusion,soil salinization,ecosystem carbon storage,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202502856-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-01-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2025-08-15-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf7.74 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved