請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98457| 標題: | 上下文學習優化方法之比較:靜態與動態策略分析 Optimization Methods for In-Context Learning: Comparing Static and Dynamic Strategies |
| 作者: | 林承濬 Cheng-Chun Lin |
| 指導教授: | 林守德 Shou-De Lin |
| 關鍵字: | 大型語言模型,自動化提示詞優化,上下文學習,範例優化, Large Language Models,Automatic Prompt Optimization,In-Context Learning,Exemplar Optimization, |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 在眾多自動化提示詞優化的方法中,指令的調整與範例的使用已經展現出強大的效果。本研究將優化範例的方法分為兩大類:靜態方法,即對所有測試樣本都使用一組固定的範例;以及動態方法,會根據測試樣本調整所使用的範例。儘管這兩種方法都在解決相同的問題,相關的系統性比較研究仍相對有限。因此,本研究針對具有代表性的靜態與動態方法,在多個資料集和實務情境中進行比較,以展示兩種方法間的差異。結果顯示動態方法在多數情境中表現優於靜態方法,但不同策略的效果仍會依據資料特性而異。 Among various automatic prompt optimization approaches, instruction tuning and the use of exemplars have shown strong effectiveness. We categorize exemplar optimization methods into two paradigms: static, which uses a fixed set of samples across all test samples, and dynamic, which adapts exemplars to the input. Despite addressing the same challenge, little attention has been paid to a systematic comparison. In this paper, we conduct an empirical study that compares representative static and dynamic methods across diverse benchmark datasets and real-world scenarios to demonstrate the difference in these two directions. Our results show that dynamic methods often outperform static ones, though effectiveness in different strategies varies depending on data characteristics. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98457 |
| DOI: | 10.6342/NTU202502349 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2025-08-15 |
| 顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
