Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98450
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳士元zh_TW
dc.contributor.advisorShih-Yuan Chenen
dc.contributor.author廖修平zh_TW
dc.contributor.authorHsiu-Ping Liaoen
dc.date.accessioned2025-08-14T16:09:56Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation[1] K.-F. Tong, K.-M. Luk, K.-F. Lee, and R.-Q. Lee, “A broadband U-slot rectangular patch antenna on a microwave substrate,” IEEE Trans Antennas Propag., vol. 48, pp. 954-960, Jun. 2000.
[2] M. A. Matin, B. S. Sharif, and C. C. Tsimenidis, “Probe Fed Stacked Patch Antenna for Wideband Applications,” IEEE Trans. Antennas Propag., vol. 55, no. 8, pp. 2385-2388, Aug. 2007.
[3] W. Liu, Z.-N. Chen, and X. Qing, “Broadband Low-Profile L-Probe Fed Metasurface Antenna with TM Leaky Wave and TE Surface Wave Resonances,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1348-1355, Mar. 2020.
[4] K.-C. Wang and H. Wong, “A Wideband Stacked Magnetic Dipole Antenna With High Aperture Efficiency,” IEEE Trans. Antennas Propag., vol. 73, no. 4, pp. 2332-2341, Apr. 2025.
[5] M. Liang et al., “3-D Printed Microwave Patch Antenna via Fused Deposition Method and Ultrasonic Wire Mesh Embedding Technique,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 1346-1349, Feb. 2015.
[6] S. Wang, X. Zhang, L. Zhu, and W. Wu, “Single-Fed Wide-Beamwidth Circularly Polarized Patch Antenna Using Dual-Function 3-D Printed Substrate,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 4, pp. 649–653, Apr. 2018.
[7] C. G. M. Ryan and G. V. Eleftheriades, “Single- and Dual-Band Transparent Circularly Polarized Patch Antennas with Metamaterial Loading,” IEEE Antennas Wireless Propag. Lett., vol. 14, no. 11, pp. 470–473, Nov. 2015.
[8] M. M. Rabie, H. El-Henawy, F. El-Hefnawy, and F. Ibrahim, “Meshed Conductor and Meshed Substrate GPS L1 Band Microstrip Antenna for Cubesat Applications,” in Proc. 35th Nat. Radio Sci. Conf., 2018, pp. 55–62.
[9] H. Zhang et al., “5G Base Station Antenna Array With Heatsink Radome,” IEEE Trans. Antennas Propag., vol. 72, no. 3, pp. 2270-2278, Mar. 2024.
[10] J. Haarla, J. Ala-Laurinaho, and V. Viikari, “Scalable 3-D-Printable Antenna Array With Liquid Cooling for 28 GHz,” IEEE Trans. Antennas Propag., vol. 71, no. 6, pp. 5067-5078, Jun. 2023.
[11] S. Zhou et al., “Forced Convection Cooling Antenna Array With Reduced Radar Cross Section,” IEEE Antennas Wireless Propag. Lett., vol. 24, no. 1, pp. 187-191, Jan. 2025.
[12] S. Ohm et al., “Design of a Dual-Polarization All-Metal Vivaldi Array Antenna Using a Metal 3D Printing Method for High-Power Jamming Systems,” IEEE Access, vol. 11, pp. 35175-35181, Mar. 2023.
[13] C. Andrews et al., “Characterization of Flat Radomes for (18 to 45) GHz High-Power Horn Antennas,” IEEE Trans. Antennas Propag., vol. 70, no. 3, pp. 2381-2386, Mar. 2022.
[14] S. Gao and H. Wong, “A Wideband Millimeter-Wave Dual-Mode OAM Metal Lens Antenna,” IEEE Trans. Antennas Propag., vol. 72, no. 11, pp. 8228-8238, Nov. 2024.
[15] S.-F. Wang et al., “Optimizing High-Power Ultra-Wideband Combined Antennas for Maximum Radiation Within Finite Aperture Area,” IEEE Trans Antennas Propag., vol. 67, no. 2, pp. 834-842, Feb. 2019.
[16] B. Zhang et al., “A Metallic 3-D Printed Airborne High-Power Handling Magneto-Electric Dipole Array with Cooling Channels,” IEEE Trans. Antennas Propag., vol. 67, no. 12, pp. 7368-7378, Dec. 2019.
[17] C. Zhao et al., “Wideband Dual-Polarized All-Metal Cross-Dipole Antenna with Feeding Column,” AEU - Int. J. Electron. Commun., vol. 153, Aug. 2022.
[18] Y. Liang et al., “High-Power Dual-Branch Helical Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 3, pp. 472-475, Mar. 2018.
[19] X.-Q. Li et al, “A GW Level High-Power Radial Line Helical Array Antenna,” IEEE Trans Antennas Propag., vol. 56, no. 9, pp. 2943–2948, Sep. 2008.
[20] X. Yin et al., “Biosymbiotic 3-D-Printed Planar Inverted-F Antenna,” IEEE Trans. Antennas Propag., vol. 72, no. 1, pp. 412-423, Jan. 2024.
[21] G.-L. Huang et al., “Lightweight Perforated Waveguide Structure Realized by 3-D Printing for RF Applications,” IEEE Trans. Antennas Propag., vol. 65, no. 8, pp. 3897-3904, Aug. 2017.
[22] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition, John Wiley & Sons, Inc., Hoboken, 2005.
[23] A. Erentok and R. W. Ziolkowski, “Metamaterial-Inspired Efficient Electrically Small Antennas,” IEEE Trans Antennas Propag., vol. 56, no. 3, pp. 691-707, Mar. 2008.
[24] X. Zhao et al., “All-Metal Beam Steering Lens Antenna for High Power Microwave Applications,” IEEE Trans. Antennas Propag., vol. 65, no.12, pp. 7340-7344, Dec. 2017.
[25] W.-K. Chen, The Electrical Engineering Handbook, Elsevier Academic Press: Amsterdam, The Netherlands, 2005.
[26] J. Ha and D. Filipovic, “Electrothermal Design of Bidirectional Wide-Boom Log-Periodic Antennas,” IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 1661-1669, Apr. 2017.
[27] A. Bejan and A. D. Kraus, Heat Transfer Handbook, Hoboken, NJ, USA: Wiley, 2003.
[28] T. L. Bergman et al., Fundamentals of Heat and Mass Transfer, 7th Edition, Hoboken, NJ: John Wiley & Sons, 2011.
[29] COMSOL Multiphysics Reference Manual, Version 6.1, COMSOL, Inc., Nov. 2022.
[30] W. D. Callister, Jr., & D. G. Rethwisch, Materials Science and Engineering: An Introduction, 10th Edition, Hoboken, NJ: Wiley, 2018.
[31] S. Modaka and E. D. Sotelinob, “The Generalized Method for Structural Dynamics Applications,” Adv. Eng. Softw., vol. 33, pp. 565-575, 2002.
[32] L. D. Lutes and S. Sarkani. Stochastic Analysis of Structural and Mechanical Vibrations, Prentice-Hall, 1997.
[33] Falcon Payload User's Guide, Version 8, Space Exploration Technologies Corporation, Mar. 2025.
[34] RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment, Section 8.0, RTCA, Inc., Washington, D.C., Dec. 2010.
[35] D. Zhang and Y. Chen, “Random Vibration Fatigue Life Analysis of Airborne Electrical Control Box,” Appl. Sci, vol. 12, no. 14, 7335, Jul. 2022.
[36] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Netw., vol. 34, no. 3, pp. 134–142, May/Jun. 2020.
[37] I. Leyva-Mayorga et al., “LEO Small-Satellite Constellations for 5G and Beyond-5G Communications,” IEEE Access, vol. 8, pp. 184955–184964, 2020.
[38] W. Lv et al., “Energy-Efficient and QoS-Aware Computation Offloading in GEO/LEO Hybrid Satellite Networks,” Remote Sens., vol. 15, no. 13, Jun. 2023, Art. no. 3299.
[39] M. F. Bernard et al., “Impact of Total Ionizing Dose on the Analog Single Event Transient Sensitivity of a Linear Bipolar Integrated Circuit,” IEEE Trans. Nucl. Sci., vol. 54, no. 6, pp. 2534–2540, Dec. 2007.
[40] O. A. Amusan et al., “Single Event Upsets in Deep-Submicrometer Technologies due to Charge Sharing,” IEEE Trans. Device Mater. Rel., vol. 8, no. 3, pp. 582–589, Sep. 2008.
[41] J. Karp et al., “Single-Event Latch-Up: Increased Sensitivity from Planar to FinFET,” IEEE Trans. Nucl. Sci., vol. 65, no. 1, pp. 217–222, Jan. 2018.
[42] B. Younes et al., “High Temperature Antennas: A Review,” Prog. Electromagn. Res. B, vol. 95, pp. 103–121, Apr. 2022.
[43] G. V. White et al., “An Overview of Basic Radiation Effects on Polymers and Glasses,” Tech. Rep. SAND 2013-8003P, Sandia National Laboratories, Albuquerque, NM, USA, Sep. 2013.
[44] W. Chew, “A Broad-Band Annular-Ring Microstrip Antenna,” IEEE Trans. Antennas Propag., vol. AP-30, no. 5, pp. 918-922, Sep. 1982.
[45] Z.-F. Liu et al., "A Method for Designing Broad-Band Microstrip Antennas in Multilayered Planar Structures", IEEE Trans. Antennas Propag., vol. 47, no. 9, pp. 1416-1420, Sep. 1999.
[46] Z.-N. Chen et al., “A Universal UHF RFID Reader Antenna,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 5, pp. 1275–1282, May 2009.
[47] M. Brewster, Thermal Radiative Transfer and Properties, John Wiley & Sons: New York, NY, USA, 1992, pp. 56-57.
[48] Y. Ding et al., “Development of a Pyrolysis Model for Glass Fiber Reinforced Polyamide 66 Blended with Red Phosphorus: Relationship Between Flammability Behavior and Material Composition,” Compos. B Eng., vol. 176, pp. 107263-107274, Nov. 2019.
[49] C. Wu et al., “Determination of Heat Transfer Coefficient by Inverse Analyzing for Selective Laser Melting (SLM) of AlSi10Mg,” Crystals, vol. 12, no. 9, pp.1309-1326, Sept. 2022.
[50] L. Scorrano et al., “Experimental Investigations of a Novel Lightweight Blade Antenna for UAV Applications [Antenna Applications Corner],” IEEE Antennas Propag. Mag., vol. 59, no. 2, pp. 108-178, Apr. 2017.
[51] Y. Luo et al., “All-metal cavity antenna with light weight high efficiency and circular polarization for satellite platform applications,” J. Phys. D: Appl. Phys., vol. 56, Mar. 2023.
[52] K.-S. Kim et al., “All-Around Beam Switched Antenna With Dual Polarization for Drone Communications,” IEEE Trans. Antennas Propag., vol. 68, no. 6, pp. 4930-4934, Jun. 2020.
[53] S. Zarbakhsh and A. R. Sebak, “Multifunctional Drone-Based Antenna for Satellite Communication,” IEEE Trans. Antennas Propag., vol. 70, no. 8, pp. 7223-7227, Aug. 2022.
[54] A. Pal et al., “Novel Interference Suppression Null Steering Antenna System for High Precision Positioning,” IEEE Access, vol. 8, pp. 77779-77787, Apr. 2020.
[55] Z. Akhter et al., “A Dual Mode, Thin and Wideband MIMO Antenna System for Seamless Integration on UAV,” IEEE Open J. Antennas Propag., vol. 2, pp. 991-1000, Sep. 2021.
[56] Y. Zhang et al., “Finding a New Balance Point: Intelligent Optimization of Multi-Target Cognitive Electronic Reconnaissance Strategy for Unmanned Aerial Vehicles,” IEEE Access, vol. 12, pp. 183252-183264, Dec. 2024.
[57] J. Shearwood et al., “C-Band Telemetry of Insect Pollinators Using a Miniature Transmitter and a Self-Piloted Drone,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 938-946, Jan. 2021.
[58] D. A. Pham et al., “High-Gain Elevational-Scanning Multibeam Planar SSPP Antenna Array With Large Ground-Clearance for Millimeter-Wave UAM Applications,” IEEE Trans. Veh. Technol., vol. 73, no. 4, pp. 5139-5149, Apr. 2024.
[59] F. Yang et al., “Wide-Band E-Shaped Patch Antennas for Wireless Communications,” IEEE Trans. Antennas Propag., vol. 49, no. 7, pp. 1094-1100, Jul. 2001.
[60] C. Kumar and D. Guha, “Mitigating Backside Radiation Issues of Defected Ground Structure Integrated Microstrip Patches,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 12, pp. 2502-2506, Dec. 2020.
[61] J. Ouyang et al., “Center-Fed Unilateral and Pattern Reconfigurable Planar Antennas with Slotted Ground Plane,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5139-5149, Oct. 2018.
[62] Z. Du and Q. Feng, “Gain Improvement and Front-to-Back Ratio Enhancement for Substrate-Integrated Magnetoelectric Dipole Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 21, no. 1, pp. 59-63, Jan. 2022.
[63] G. Huff and J. Bernhard, “Improvements in the Performance of Microstrip Antennas on Finite Ground Planes Through Ground Plane Edge Serrations,” IEEE Microw. Wirel. Compon. Lett., vol. 12, no. 8, pp. 308-310, Aug. 2002.
[64] D. Phillips et al., “Corona Onset as a Design Optimization Criterion for High Voltage Hardware,” IEEE Trans. Dielectr. Electr. Insul., vol. 7, no. 6, pp. 744-751, Dec. 2000.
[65] A. Tiwari et al., “Improved Corrosion Resistance Behaviour of AlSi10Mg Alloy due to Selective Laser Melting,” Coatings, vol. 13, no. 2, 225, Jan. 2023.
[66] B. Li et al., “Study of Morphology and Corrosion Behavior of Aluminum Coatings on Steel Substrates under Simulated Acid Rain Conditions,” Metals, vol. 13, no. 3, 613, Mar. 2023.
[67] W. Pan et al., “Research on Microstructure and Properties of AlSi10Mg Fabricated by Selective Laser Melting,” Materials, vol. 15, no. 7, pp. 2528-2543, Mar. 2022.
[68] N. Limbasiya et al., “A Comprehensive Review on the Effect of Process Parameters and Post-Process Treatments on Microstructure and Mechanical Properties of Selective Laser Melting of AlSi10Mg,” J. Mater. Res. Technol., vol. 21, pp. 1141-1176, 2022.
[69] T.-H. Chio et al., “Application of Direct Metal Laser Sintering to Waveguide-Based Passive Microwave Components, Antennas, and Antenna Arrays,” Proc. IEEE, vol. 105, no. 4, pp. 632-644, Apr. 2017.
[70] D.-D. Gu et al., “Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms,” Int. Mater. Rev., vol. 57, no. 3, pp.133-164, 2012.
[71] N. T. Aboulkhair et al., “3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys Using Selective Laser Melting,” Prog. Mater. Sci., vol. 106, no. 100578, 2019.
[72] J. R. Davis, Alloying: Understanding the Basics, ASM International, pp. 351-416, 2001.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98450-
dc.description.abstract本論文提出了兩款專為輕量化和寬頻應用而設計的具有網格結構之全金屬天線。針對特定的應用情境,我們分別說明了天線的設計流程、工作原理以及原型製作與測試結果。在分析中,除了基本的電磁性能之外,還進行多物理場探討。
第一款設計是專為低地球軌道(LEO)到地球靜止軌道(GEO)衛星間鏈路設計的具有寬頻(1.8-2.3 GHz)圓極化之輕量化堆疊式貼片天線。該天線由四個網格狀薄鋁圓盤組成,設計中未使用任何介質基板,僅採用聚醯胺墊片支撐這四個鋁圓盤,旨在避免基板中熱量蓄積,並減輕天線的重量。此外,採用新穎的同心圓網狀結構,不僅確保了天線效能和結構牢固性,更重要的是天線重量(僅30公克)減輕一半。其寬頻圓極化特性是透過循序旋轉饋入方式和堆疊式貼片結構實現。多物理場分析顯示,所提出的天線能有效適應火箭發射時惡劣的震動環境。隨機振動分析確保了結構可靠性。天線原型以電腦數值控制(CNC)金屬加工技術製作並測試,測量結果符合衛星間鏈路應用規格。
第二款設計是專為高功率機載應用所設計的具有寬頻(2.9-3.5 GHz)線性極化之超輕量化折疊E形貼片天線。該天線僅由折疊的E形貼片和接地面組成,它們均由鋁網製成。在它們之間的支撐採用了聚醯胺墊片,以取代介質基板,這對天線的重量和熱量蓄積皆有顯著的降低。本設計(小於1公克)在重量方面大幅減少了90.34%,這可歸功於天線的小型化和全金屬網格設計。天線的寬頻性能是透過E形貼片激發的兩個鄰近的諧振實現。高功率分析顯示,這種全金屬網格狀設計不僅具備足夠的功率處理能力(3.4x10^6瓦),還能在75瓦連續波的輸入功率下將天線結構的溫度維持在可接受範圍(45.54°C)。天線的隨機振動分析確認其結構穩定性。天線原型以金屬3D列印製作,量測結果符合高功率S波段應用預期。
zh_TW
dc.description.abstractThis dissertation presents two novel all-metal antennas with mesh structures specifically designed for lightweight and broadband applications. For specific application scenarios, we systematically illustrate the antenna design process, working principles, and prototype fabrication and testing. In the analysis, beyond the fundamental electromagnetic performance, multi-physics investigations are also conducted.
The first design is a lightweight stacked patch antenna with broadband (1.8-2.3 GHz) circular polarization designed for Low Earth Orbit (LEO) to Geostationary Orbit (GEO) satellite links. The antenna comprises a structure of four thin meshed aluminum disks supported by polyamide spacers instead of dielectric substrates. This design aims to avoid heat accumulation in the substrate and reduce the antenna's weight. Furthermore, adopting a novel concentric circular mesh structure ensures undegraded antenna performance and structural robustness and, more importantly, reduces the antenna weight by half (only 30 g). The broadband circular polarization characteristic is achieved through a sequential rotation feed structure and a stacked patch topology. Multi-physics analysis demonstrates that the proposed antenna can effectively adapt to the harsh vibrating environments in the launch vehicles. Random vibration analysis confirms the structural reliability. A prototype antenna was fabricated using Computer Numerical Control (CNC) metal processing and tested, with measurement results meeting the specifications for LEO-to-GEO inter-satellite link applications.
The second design is a lightweight folded E-shaped patch antenna with wideband (2.9-3.5 GHz) linear polarization designed for high-power airborne applications. The antenna consists solely of a folded E-shaped patch and a ground plane, both made of aluminum mesh. Polyamide spacers are used for support between them, eliminating the need for a dielectric substrate, which significantly reduces both the antenna's weight and heat accumulation. This design (less than 1 g) achieves an impressive 90.34% weight reduction, attributed to the antenna's miniaturization and the metal's meshed design. The wideband performance is achieved through the two adjacent resonances excited by the E-shaped patch. In the high-power analysis, this all-mesh design not only possesses sufficient power handling capability of 3.4x10^6 W but also maintains its temperature within an acceptable range of 45.54°C under a continuous wave input power of 75 W. The antenna's vibrations are analyzed, confirming structural stability. An antenna prototype is fabricated using metal 3D printing, and the measured results meet the expectations for high-power S-band applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:09:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:09:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………i
誌謝…………………………………………………………………………………ii
中文摘要…………………………………………………………………………iii
ABSTRACT…………………………………………………………………………iv
CONTENTS………………………………………………………………………v
LIST OF FIGURES………………………………………………………………viii
LIST OF TABLES…………………………………………………………………xiv
Chapter 1 Introduction…………………………………………………………1
1.1 Motivations………………………………………………………………1
1.2 Literature review………………………………………………………2
1.3 Contributions………………………………………………………………5
1.4 Dissertation organization………………………………………………….6
Chapter 2 Antenna parameters and analysis fundamentals…………………8
2.1 The electrical parameters of the antenna……………………………………8
2.1.1 Reflective coefficient………………………………………………8
2.1.2 Antenna efficiency and realized gain………………………………9
2.1.3 Polarization………………………………………………………10
2.1.4 Front-to-back ratio………………………………………………12
2.2 Basis of high-power and thermal analysis…………………………………13
2.2.1 Evaluation of the power-handling capability………………………13
2.2.2 Electromagnetic power losses and heat sources……………………14
2.2.3 Electromagnetic-thermal analysis…………………………………16
2.3 Principle of random vibration analysis…………………………………18
2.3.1 Analysis process of random vibration…………………………18
2.3.2 Free vibration: natural frequency and mode shape…………………19
2.3.3 Random vibration: power spectral density…………………………22
Chapter 3 Lightweight broadband circularly-polarized stacked patch antenna for LEO-to-GEO inter-satellite links………………………………29
3.1 Introduction to inter-satellite communications……………………………29
3.2 Antenna design and electromagnetic analysis…………………………33
3.2.1 Antenna configuration……………………………………………33
3.2.2 Analysis of electromagnetic characteristics………………………35
3.3 High-power and electromagnetic-thermal analyses…………………59
3.4 Random vibration analysis………………………………………………64
3.5 Antenna prototype and measured results………………………………73
Chapter 4 Ultra-lightweight wideband folded E-shaped patch antenna for high-power drone-based radar applications………………………77
4.1 Introduction to drone applications…………………………………………77
4.2 Antenna design and electromagnetic analysis……………………………79
4.2.1 Antenna configuration……………………………………………79
4.2.2 Analysis of electromagnetic characteristics………………………81
4.3 High-power and electromagnetic-thermal analyses…………………97
4.4 Random vibration analysis………………………………………………103
4.5 Antenna prototype and measured results…………………………………110
Chapter 5 Conclusion and future work……………………………………115
5.1 Conclusion………………………………………………………………115
5.2 Future work………………………………………………………………120
REFERENCE……………………………………………………………………123
LIST OF PUBLICATIONS………………………………………………………131
-
dc.language.isoen-
dc.subject寬頻天線zh_TW
dc.subject高功率應用zh_TW
dc.subject衛星間鏈路zh_TW
dc.subject網格狀金屬結構zh_TW
dc.subject多物理場分析zh_TW
dc.subject重量減輕zh_TW
dc.subjectinter-satellite linksen
dc.subjectBroadband antennasen
dc.subjectweight reductionen
dc.subjectmulti-physics analysisen
dc.subjectmeshed metal structuresen
dc.subjecthigh-power applicationsen
dc.title基於全金屬網格結構之輕量化寬頻天線設計及其多物理場分析zh_TW
dc.titleDesign and Multiphysics Analysis of Lightweight Broadband Antennas Based on All-Metal Meshed Structuresen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳念偉;馬自莊;廖文照;陳晏笙;曾昭雄zh_TW
dc.contributor.oralexamcommitteeNan-Wei Chen;Tzyh-Ghuang Ma;Wen-Jiao Liao;Yen-Sheng Chen;Chao-Hsiung Tsengen
dc.subject.keyword寬頻天線,高功率應用,衛星間鏈路,網格狀金屬結構,多物理場分析,重量減輕,zh_TW
dc.subject.keywordBroadband antennas,high-power applications,inter-satellite links,meshed metal structures,multi-physics analysis,weight reduction,en
dc.relation.page131-
dc.identifier.doi10.6342/NTU202503105-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-08-15-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
28.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved