請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98449完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇炫榮 | zh_TW |
| dc.contributor.advisor | Hsuan-Jung Su | en |
| dc.contributor.author | 劉祐蓁 | zh_TW |
| dc.contributor.author | Yu-Chen Liu | en |
| dc.date.accessioned | 2025-08-14T16:09:42Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | BIBLIOGRAPHY
[1] F. Shu, Y. Qin, T. Liu, L. Gui, Y. Zhang, J. Li, and Z. Han, “Lowcomplexity and high-resolution DOA estimation for hybrid analog and digital massive MIMO receive array,” IEEE Transactions on Communications, vol. 66, no. 6, pp. 2487–2501, Jun. 2018. [2] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE communications magazine, vol. 52, no. 2, pp. 106–113, Feb. 2014. [3] S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both?” IEEE Communications Magazine, vol. 52, no. 12, pp. 110–121, Dec. 2014. [4] S. Han, I. Chih-Lin, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G,” IEEE Communications Magazine, vol. 53, no. 1, pp. 186–194, Jan. 2015. [5] R. M´endez-Rial, C. Rusu, N. Gonz´alez-Prelcic, A. Alkhateeb, and R. W. Heath, “Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches?” IEEE access, vol. 4, pp. 247–267, Jan. 2016. [6] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 501–513, Apr. 2016. [7] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE journal on selected areas in communications, vol. 35, no. 6, pp. 1201–1221, Jun. 2017. [8] A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda, “Hybrid beamforming for massive MIMO: A survey,” IEEE Communications magazine, vol. 55, no. 9, pp. 134–141, Sep. 2017. [9] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman, “A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3060–3097, 2018. [10] J. Zhang, X. Yu, and K. B. Letaief, “Hybrid beamforming for 5G and beyond millimeter-wave systems: A holistic view,” IEEE Open Journal of the Communications Society, vol. 1, pp. 77–91, 2020. [11] M. Giordani, M. Mezzavilla, and M. Zorzi, “Initial access in 5G mmWave cellular networks,” IEEE communications Magazine, vol. 54, no. 11, pp. 40–47, Nov. 2016. [12] W. Attaoui, K. Bouraqia, and E. Sabir, “Initial access & beam alignment for mmWave and terahertz communications,” IEEE Access, vol. 10, pp. 35 363–35 397, 2022. [13] R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE journal of selected topics in signal processing, vol. 10, no. 3, pp. 436–453, Apr. 2016. [14] C. De Lima, D. Belot, R. Berkvens, A. Bourdoux, D. Dardari, M. Guillaud, M. Isomursu, E.-S. Lohan, Y. Miao, A. N. Barreto et al., “Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges,” IEEE Access, vol. 9, pp. 26 902–26 925, 2021. [15] A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du, D. K. P. Tan, J. Lu et al., “A survey on fundamental limits of integrated sensing and communication,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 994–1034, 2022. [16] A. Shastri, N. Valecha, E. Bashirov, H. Tataria, M. Lentmaier, F. Tufvesson, M. Rossi, and P. Casari, “A review of millimeter wave device-based localization and device-free sensing technologies and applications,” IEEE Communications Surveys & Tutorials, vol. 24, no. 3, pp. 1708–1749, 2022. [17] S.-F. Chuang, W.-R. Wu, and Y.-T. Liu, “High-resolution AoA estimation for hybrid antenna arrays,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 7, pp. 2955–2968, Jul. 2015. [18] S. Li, Y. Liu, L. You, W.Wang, H. Duan, and X. Li, “Covariance matrix reconstruction for DOA estimation in hybrid massive MIMO systems,” IEEE Wireless Communications Letters, vol. 9, no. 8, pp. 1196–1200, Aug. 2020. [19] Y. Liu, Y. Yan, L. You, W. Wang, and H. Duan, “Spatial covariance matrix reconstruction for DOA estimation in hybrid massive MIMO systems with multiple radio frequency chains,” IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 12 185–12 190, Nov. 2021. [20] B. Shi, Q. Zhang, R. Dong, Q. Jie, S. Yan, F. Shu, and J. Wang, “DOA estimation for hybrid massive MIMO systems using mixed-ADCs: Performance loss and energy efficiency,” IEEE Open Journal of the Communications Society, 2023. [21] A. Barabell, “Improving the resolution performance of eigenstructurebased direction-finding algorithms,” in ICASSP ’83. IEEE International Conference on Acoustics, Speech, and Signal Processing, ser. ICASSP ’83. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 8, 1983, pp. 336–339. [22] R. O. Schmidt, “A signal subspace approach to multiple emitter location and spectral estimation,” Ph.D. Dissertation, Dept. Elect. Eng., Stanford University, 1981. [23] R. T. Hoctor and S. A. Kassam, “The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging,” Proceedings of the IEEE, vol. 78, no. 4, pp. 735–752, 1990. [24] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4167–4181, Aug. 2010. [25] C.-L. Liu and P. P. Vaidyanathan, “Super Nested Arrays: Linear Sparse Arrays With Reduced Mutual Coupling—Part I: Fundamentals,” IEEE Transactions on Signal Processing, vol. 64, no. 15, pp. 3997–4012, 2016. [26] J. Liu, Y. Zhang, Y. Lu, S. Ren, and S. Cao, “Augmented nested arrays with enhanced DOF and reduced mutual coupling,” IEEE Transactions on Signal Processing, vol. 65, no. 21, pp. 5549–5563, Nov. 2017. [27] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and arrays,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 573–586, Feb. 2011. [28] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” in 2011 Digital signal processing and signal processing education meeting (DSP/SPE), 2011, pp. 289–294. [29] S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized coprime array configurations for direction-of-arrival estimation,” IEEE Transactions on Signal Processing, vol. 63, no. 6, pp. 1377–1390, Mar. 2015. [30] R. Rajam¨aki, “Sparse sensor arrays for active sensing - Array configurations and signal processing,” Ph.D. Dissertation, Dept. of Signal Process. and Acoust., Aalto University, 2021. [31] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE assp magazine, vol. 5, no. 2, pp. 4–24, 1988. [32] Y.-C. Liu, H.-J. Su, and Y. Takano, “Enhanced multiple angles-of-arrival detection using non-uniform sub-connection in hybrid beamforming systems,” in 2022 IEEE Globecom Workshops (GC Wkshps), 2022, pp. 13–18. [33] ——, “Underdetermined AOA Estimation of Correlated Sources Using Hybrid Beamforming Based on NSC Structure,” in 2023 IEEE Globecom Workshops (GC Wkshps), 2023, pp. 805–810. [34] E. J. Cand`es, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on information theory, vol. 52, no. 2, pp. 489–509, Feb. 2006. [35] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006. [36] Y. D. Zhang, M. G. Amin, and B. Himed, “Sparsity-based DOA estimation using co-prime arrays,” in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, ser. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 3967– 3971. [37] Z. Tan and A. Nehorai, “Sparse Direction of Arrival Estimation Using Co-Prime Arrays with Off-Grid Targets,” IEEE Signal Processing Letters, vol. 21, no. 1, pp. 26–29, 2014. [38] Q. Shen, W. Liu, W. Cui, and S. Wu, “Underdetermined DOA Estimation Under the Compressive Sensing Framework: A Review,” IEEE Access, vol. 4, pp. 8865–8878, 2016. [39] J. Yang, G. Liao, and J. Li, “An efficient off-grid DOA estimation approach for nested array signal processing by using sparse Bayesian learning strategies,” Signal Processing, vol. 128, pp. 110–122, 2016. [40] F. Chen, J. Dai, N. Hu, and Z. Ye, “Sparse Bayesian learning for off-grid DOA estimation with nested arrays,” Digital Signal Processing, vol. 82, pp. 187–193, 2018. [41] J. Dai and H. C. So, “Real-valued sparse Bayesian learning for DOA estimation with arbitrary linear arrays,” IEEE Transactions on Signal Processing, vol. 69, pp. 4977–4990, 2021. [42] H. Zeng, Z. Ahmad, J. Zhou, Q. Wang, and Y. Wang, “DOA estimation algorithm based on adaptive filtering in spatial domain,” China Communications, vol. 13, no. 12, pp. 49–58, 2016. [43] S. Joel, S. K. Yadav, and N. V. George, “Coarray LMS: Adaptive Underdetermined DOA Estimation With Increased Degrees of Freedom,” IEEE Signal Processing Letters, vol. 31, pp. 591–595, 2024. [44] S. Qin, Y. D. Zhang, and M. G. Amin, “DOA estimation of mixed coherent and uncorrelated signals exploiting a nested MIMO system,” in 2014 IEEE Benjamin Franklin Symposium on Microwave and Antenna Sub-systems for Radar, Telecommunications, and Biomedical Applications (BenMAS), ser. 2014 IEEE Benjamin Franklin Symposium on Microwave and Antenna Sub-systems for Radar, Telecommunications, and Biomedical Applications (BenMAS), 2014, pp. 1–3. [45] E. BouDaher, F. Ahmad, and M. G. Amin, “Sparsity-Based Direction Finding of Coherent and Uncorrelated Targets Using Active Nonuniform Arrays,” IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1628–1632, 2015. [46] H. Qiao, A. Koochakzadeh, and P. Pal, “Correlation-aware sensing in active and passive modes for source localization,” in 2016 50th Asilomar Conference on Signals, Systems and Computers, ser. 2016 50th Asilomar Conference on Signals, Systems and Computers, 2016, pp. 1692–1696. [47] S. Qin, Y. D. Zhang, and M. G. Amin, “DOA estimation of mixed coherent and uncorrelated targets exploiting coprime MIMO radar,” Digital Signal Processing, vol. 61, pp. 26–34, 2017. [48] J. Shi, G. Hu, X. Zhang, and F. Sun, “Sparsity-Based DOA Estimation of Coherent and Uncorrelated Targets With Flexible MIMO Radar,”IEEE Transactions on Vehicular Technology, vol. 68, no. 6, pp. 5835– 5848, 2019. [49] J. Li and P. Stoica, “MIMO Radar with Colocated Antennas,” IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 106–114, 2007. [50] D. Inserra and A. M. Tonello, “Characterization of hardware impairments in multiple antenna systems for DoA estimation,” Journal of Electrical and Computer Engineering, vol. 2011, no. 1, p. 908234, 2011. [51] K. R. Dandekar, H. Ling, and G. Xu, “Smart antenna array calibration procedure including amplitude and phase mismatch and mutual coupling effects,” in 2000 IEEE International Conference on Personal Wireless Communications. Conference Proceedings (Cat. No.00TH8488), 2000, pp. 293–297. [52] A. Florio, G. Avitabile, and G. Coviello, “A Linear Technique for Artifacts Correction and Compensation in Phase Interferometric Angle of Arrival Estimation,” Sensors, vol. 22, no. 4, p. 1427, 2022. [53] Q. Fang, B. Cao, M. Jin, Y. Han, and X. Qiao, “Reconstruction of eigenvalues in noise subspace for uneuqual power sources DOA estimation,” in 2014 IEEE Radar Conference, 2014, pp. 0591–0596. [54] Y. Yang and X. Mao, “Hybrid method of DOA estimation using nested array for unequal power sources,” in 2018 International Conference on Radar (RADAR). IEEE, 2018, pp. 1–5. [55] M. Ali and K. Nathwani, “High resolution DOA estimation for contiguous target with large power difference,” in 2022 Sensor Signal Processing for Defence Conference (SSPD), 2022, pp. 1–5. [56] A. M. Molaei, V. Fusco, and O. Yurduseven, “Direct one-bit DOA estimation robust in presence of unequal power signals,” IEEE Access, 2024. [57] K. H. Sayidmarie and Q. H. Sultan, “Synthesis of wide beam array patterns using random phase weights,” in 2013 International Conference on Electrical Communication, Computer, Power, and Control Engineering (ICECCPCE), 2013, pp. 52–57. [58] B. D. Steinberg, “Principles of aperture and array system design: Including random and adaptive arrays,” New York, 1976. [59] C.-L. Liu and P. P. Vaidyanathan, “Remarks on the Spatial Smoothing Step in Coarray MUSIC,” IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1438–1442, 2015. [60] Z. Xiao, P. Xia, and X.-G. Xia, “Codebook Design for Millimeter-Wave Channel Estimation With Hybrid Precoding Structure,” IEEE Transactions on Wireless Communications, vol. 16, no. 1, pp. 141–153, 2017. [61] F. Pedraza and G. Caire, “Sensing-Assisted Beam Tracking for mmWave V2I Communications With Analog, Hybrid, and Digital Antenna Architectures,” IEEE Transactions on Wireless Communications, vol. 24, no. 1, pp. 447–461, 2025. [62] A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath, “Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831–846, 2014. [63] H. Tao, J. Xin, J. Wang, N. Zheng, and A. Sano, “Two-Dimensional Direction Estimation for a Mixture of Noncoherent and Coherent Signals,” IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 318–333, 2015. [64] A. Maleki, L. Anitori, Z. Yang, and R. G. Baraniuk, “Asymptotic Analysis of Complex LASSO via Complex Approximate Message Passing (CAMP),” IEEE Transactions on Information Theory, vol. 59, no. 7, pp. 4290–4308, 2013. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98449 | - |
| dc.description.abstract | 混合波束成形(HBF)正成為未來無線網路的關鍵技術,特別是在毫米波(mmWave)頻段。在本論文中,我們提出了一種非均勻子連接混合波束成形(NSC-HBF)系統,能夠實現差分共陣列並用於欠定來向角(AOA)之估計。我們也提出了一種寬波束合成方法,以緩和類比合成之增益不均勻導致的性能下降。為進一步提高效率,我們還改進了共陣列最小均方(co-array LMS)方法,通過直接求解最小平方問題來決定濾波器權重。該方法降低了計算複雜度並消除了迭代過程,以實現更快的處理。我們也討論了陣列接收信號由不相關和相關源混合組成的情景。數值結果展示了使用所提出的NSC-HBF進行欠定來向角估計的可行性,並強調了類比合成碼本設計的重要性。 | zh_TW |
| dc.description.abstract | Hybrid beamforming (HBF) is emerging as a key technology for future wireless networks, particularly in the millimeter-wave (mmWave) bands. In this dissertation, we present a non-uniform sub-connected hybrid beamforming (NSC-HBF) system that enables the implementation of the difference co-array for underdetermined angle-of-arrival (AOA) estimation. We propose a broad beam synthesis method to mitigate performance degradation caused by uneven analog combining gains. To further enhance efficiency, we modify the co-array least mean squares (co-array LMS) method by directly solving the least-squares problem to determine the filter weights. The proposed method reduces computational complexity and eliminates iterative procedures for faster processing. We also address scenarios where the signals received by the array consist of a mixture of uncorrelated and correlated sources. Numerical results demonstrated the feasibility of underdetermined AOA estimation using the proposed NSC-HBF and highlighted the importance of analog combining codebook design. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:09:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:09:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | CONTENTS
Abstract (Traditional Chinese) i Abstract ii Contents iii List of Figures vi List of Tables xi 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Acronyms and Notation . . . . . . . . . . . . . . . . . . . . . 7 2 Preliminary 9 2.1 Uniform Linear Array . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Nested Array . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Hybrid Beamforming Architectures . . . . . . . . . . . . . . . 18 3 Non-uniform Sub-connected HBF 20 3.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Mixed Spatial Signatures . . . . . . . . . . . . . . . . . 20 3.1.2 Spatial Patterns . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Discarded Proposal . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Proposed NSC-HBF Architecture . . . . . . . . . . . . . . . . 28 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5.1 The Effect of Sub-array Spatial Patterns on AOA Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5.2 Angle Ambiguity . . . . . . . . . . . . . . . . . . . . . 34 3.5.3 Color Noise . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Underdetermined AOA Estimation using NSC-HBF 35 4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Difference Co-array . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Analog Combining Codebook . . . . . . . . . . . . . . . . . . 39 4.4 Nulling Antenna Approach . . . . . . . . . . . . . . . . . . . . 45 4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5.1 Pseudo-spectrum . . . . . . . . . . . . . . . . . . . . . 54 4.5.2 Probability of Detection . . . . . . . . . . . . . . . . . 62 4.5.3 RMSE Performance . . . . . . . . . . . . . . . . . . . . 65 4.5.4 Trade-off between DOFs and Complexity . . . . . . . . 68 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5 Underdetermined AOA Estimation of Correlated Sources 71 5.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Difference Co-array in the Presence of Correlated Signals . . . 74 5.3 Sparse Signal Recovery . . . . . . . . . . . . . . . . . . . . . . 76 5.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6 Conclusion 85 Bibliography 87 | - |
| dc.language.iso | en | - |
| dc.subject | 巢狀陣列 | zh_TW |
| dc.subject | 混合波束成形 | zh_TW |
| dc.subject | 非均勻子連接混合波束成形 | zh_TW |
| dc.subject | 欠定來向角估計 | zh_TW |
| dc.subject | HBF | en |
| dc.subject | NSC-HBF | en |
| dc.subject | Nested array | en |
| dc.subject | underdetermined AOA estimation | en |
| dc.title | 使用非均勻子連接混合波束成形系統之欠定來向角估計 | zh_TW |
| dc.title | Underdetermined AOA Estimation Using Non-Uniform Sub-Connected Hybrid Beamforming Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 馮世邁;劉俊麟;黃彥銘;伍紹勳 | zh_TW |
| dc.contributor.oralexamcommittee | See-May Phoong;Chun-Lin Liu;Yen-Ming Huang;Sau-Hsuan Wu | en |
| dc.subject.keyword | 巢狀陣列,混合波束成形,非均勻子連接混合波束成形,欠定來向角估計, | zh_TW |
| dc.subject.keyword | Nested array,HBF,NSC-HBF,underdetermined AOA estimation, | en |
| dc.relation.page | 97 | - |
| dc.identifier.doi | 10.6342/NTU202501424 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-30 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-15 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
