Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98448
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳家麟zh_TW
dc.contributor.advisorChia-Lin Chenen
dc.contributor.author劉晏禎zh_TW
dc.contributor.authorYen Zhen Liuen
dc.date.accessioned2025-08-14T16:09:29Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation[1]  Thomas, D. A., & Ely, R. J. (1996). Making differences matter: A new paradigm for managing diversity. Harvard Business Review, 74(5), 79-90.
[2]  Cox, T. (1993). Cultural diversity in organizations: Theory, research, and practice. Berrett-Koehler Publishers.
[3]  Crenshaw, K. (1989). Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics. University of Chicago Legal Forum, 1989, 139-167.
[4]  Rawls, J. (1971). A Theory of Justice. Cambridge, MA: Belknap Press of Harvard University Press.
[5]  Young, I. M. (1990). Justice and the Politics of Difference. Princeton University Press.
[6]  Fraser, N. (1997). Justice Interruptus: Critical Reflections on the "Postsocialist" Condition. Routledge.
[7]  Shore, L. M., Randel, A. E., Chung, B. G., Dean, M. A., Ehrhart, K. H., & Singh, G. (2011). Inclusion and diversity in work groups: A review and model for future research. Journal of Management, 37(4), 1262-1289.
[8]  Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J., & Handelsman, J. (2012). Science faculty’s subtle gender biases favor male students. Proceedings of the National Academy of Sciences, 109(41), 16474-16479.
[9]  Quillian, L., Pager, D., Hexel, O., & Midtbøen, A. H. (2017). Meta-analysis of field experiments shows no change in racial discrimination in hiring over time. Proceedings of the National Academy of Sciences, 114(41), 10870-10875.
[10] Wallace, M., Wright, B. R. E., & Hyde, A. (2014). Religious affiliation and hiring discrimination in the American South: A field experiment. Social Currents, 1(2), 189-207.
[11] Ameri, M., Schur, L., Adya, M., Bentley, F. S., McKay, P., & Kruse, D. (2018). The disability employment puzzle: A field experiment on employer hiring behavior. ILR Review, 71(2), 329-364.
[12] Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21), 610-623.
[13] Shah, D., Schwartz, H. A., & Hovy, D. (2020). Predictive biases in natural language processing models: A conceptual framework and overview. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 5248-5264.
[14] Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in BERTology: What we know about how BERT works. Transactions of the Association for Computational Linguistics, 8, 842-866.
[15] Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. arXiv preprint arXiv:1607.06520.
[16] Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183-186.
[17] Parrish, A., Zhao, J., Wang, A., & Binns, R. (2022). BBQ: A hand-built bias benchmark for question answering. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL).
[18] Nadeem, M., Bethke, A., & Reddy, S. (2021). StereoSet: Measuring stereotypical bias in pretrained language models. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 5356-5371.
[19] Zhao, J., Wang, T., Yatskar, M., Ordonez, V., & Chang, K. W. (2018). Gender bias in coreference resolution: Evaluation and debiasing methods. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics, 15-20.
[20] Kurita, K., Vyas, N., Pareek, A., Black, A. W., & Tsvetkov, Y. (2019). Measuring bias in contextualized word representations. Proceedings of the First Workshop on Gender Bias in Natural Language Processing, 166-172.
[21] Sap, M., Card, D., Gabriel, S., Choi, Y., & Smith, N. A. (2019). The risk of racial bias in hate speech detection. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 1668-1678.
[22] Blodgett, S. L., Barocas, S., Daumé III, H., & Wallach, H. (2020). Language (technology) is power: A critical survey of "bias" in NLP. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 5454-5476.
[23] Noble, S. U. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press.
[24] O'Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown Publishing Group.
[25] Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin’s Press.
[26] Acerbi, A., & Stubbersfield, J. M. (2023). Transmission biases in large language models: An experimental approach. Cognitive Science, 47(2), e13248.
[27] Ferdman, B. M., & Deane, B. R. (Eds.). (2014). Diversity at work: The practice of inclusion. John Wiley & Sons.
[28] Guo, W., Sap, M., & Caliskan, A. (2024).Bias in large language models: Origins, evaluation, and mitigation. arXiv preprint
[29] Acerbi, A., & Stubbersfield, J. M. (2023).Large language models show human-like content biases in transmission chain experiments. Proceedings of the National Academy of Sciences, 120(48), e202313790.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98448-
dc.description.abstract隨著生成式人工智慧(Generative AI)技術快速演進,大型語言模型(Large Language Models, LLMs)如 OpenAI 的 GPT 系列已廣泛應用於教育、醫療、司法、就業輔助與公共政策等多元領域,並逐漸成為企業數位轉型與知識自動化的重要工具。近年來,企業更開始將生成式 AI 應用於人力資源管理、公關溝通、內部文件生成與決策輔助等實務場景。然而,當語言模型處理涉及多元、公平與包容(Diversity, Equity, Inclusion, 簡稱 DEI)之議題時,若其生成內容潛藏語言偏見或不公平傾向,不僅可能再製社會刻板印象,對特定族群造成傷害,更可能使企業在無意中違反倫理原則、損及品牌形象與社會責任聲譽。
本研究以 GPT 系列模型為研究對象,探討其在 DEI 議題中的語言偏見行為,具體分析 GPT-3.5-turbo、GPT-4、GPT-4o 與 GPT-4.1 四種模型在面對性別、種族、宗教與身心障礙四大主題時的回應差異。研究設計採用三因子實驗架構(模型版本 × 語境清晰度 × 問題類型),透過封閉式選擇題與開放式描述題,並搭配模糊與明確語境操作,系統性檢視不同模型於不同語境條件下的偏見傾向、公平性與推理能力。
研究結果顯示,模型版本對回應傾向有顯著影響:GPT-3.5-turbo 較常表達明確立場,偏見表現顯著,而 GPT-4 系列整體表現出風險規避與中立偏好;語境模糊時,模型易使用刻板印象進行推論,而語境明確可提升推理品質;開放式問題則更易顯示語氣與用詞的潛在偏誤。此外,研究進一步連結模型偏見行為與企業應用風險,指出若企業在使用語言模型時忽略偏誤辨識、語境設計與版本選擇,將可能在招募、公關、內訓、風控等場域中做出不公平或不當決策。
因此,本研究建議企業應建構 AI 使用指引、偏見檢測機制與倫理治理架構,將語言模型納入全面的 DEI 風險控管與公平決策流程。研究成果除揭示生成式 AI 的偏見行為,也為企業倫理實務提供理論依據與操作建議,具備高度應用價值。
zh_TW
dc.description.abstractWith the rapid evolution of Generative AI technologies, large language models (LLMs) such as OpenAI’s GPT series have been widely deployed across domains such as education, healthcare, legal systems, employment, and public policy. In recent years, these models have also become integral to enterprise applications, including decision support, human resource management, corporate communications, and document automation. However, when LLMs engage with topics involving Diversity, Equity, and Inclusion (DEI), the generation of biased or unfair content poses significant ethical concerns. Such outputs can inadvertently reinforce social stereotypes, cause harm to marginalized groups, and expose organizations to reputational, legal, and ethical risks.
This study investigates the language bias and fairness performance of four major GPT models—GPT-3.5-turbo, GPT-4, GPT-4o, and GPT-4.1—when responding to DEI-related questions. A three-factor experimental design was employed (model version × contextual clarity × question type), incorporating both closed- and open-ended tasks on four bias domains: gender, race, religion, and disability. Each prompt was tested under two contextual settings (ambiguous vs. explicit) to examine how context and model architecture influence bias expression, neutrality, and reasoning accuracy.
Results indicate significant differences in model behavior. GPT-3.5-turbo showed stronger bias and assertive responses, while GPT-4 series models demonstrated higher neutrality and risk aversion. Models were more likely to exhibit stereotypical reasoning under ambiguous prompts, whereas explicit contexts led to more accurate and fair outputs. Open-ended responses revealed implicit tonal and lexical biases that were not always apparent in closed-format tasks.
Beyond academic insights, the study also addresses real-world implications for business ethics. If enterprises fail to recognize or mitigate these biases—especially in scenarios such as recruitment, employee evaluations, PR messaging, and risk analysis—unfair or inappropriate decisions may occur. Accordingly, this research proposes that organizations establish AI usage guidelines, bias auditing mechanisms, and ethical governance frameworks to align their AI practices with DEI principles and corporate accountability.
By bridging language model evaluation and business ethics, this study contributes to the emerging field of responsible AI and provides actionable recommendations for ethically aligned technology adoption in enterprise settings.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:09:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:09:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ................................................................................................................................... i
中文摘要 .......................................................................................................................... ii
ABSTRACT .................................................................................................................... iii
目次 .................................................................................................................................. v
圖次 ............................................................................................................................... viii
表次 .................................................................................................................................. x
第一章 緒論 .................................................................................................................... 1
1.1 研究背景與動機 ................................................................................................................. 1
1.2 研究問題與目的 ................................................................................................................. 2
第二章 文獻探討 ............................................................................................................ 4
2.1 DEI 的理論基礎與相關論述 ............................................................................................. 4
2.2 DEI 議題中的偏見:性別、種族、宗教與身心障礙 ..................................................... 5
2.3 語言模型的偏見研究 ......................................................................................................... 6
2.4 語言模型的偏見來源 ......................................................................................................... 7
2.5 偏見在 DEI 議題的表現形式 .......................................................................................... 8
2.6 模型演進與偏見殘留 ......................................................................................................... 8
2.7 AI 語言模型偏見與企業倫理的連結 ............................................................................... 9
第三章 研究方法 .......................................................................................................... 10
3.1 研究架構 ........................................................................................................................... 10
3.2 研究設計 ........................................................................................................................... 10
3.3 實驗對象 ........................................................................................................................... 11
3.4 實驗問題設計 ................................................................................................................... 11
3.5 問題結構與語境設計 ....................................................................................................... 12
3.6 資料處理流程 ................................................................................................................... 13
3.6.1 API 輸入與多重輸出 .............................................................................................................. 13
3.6.2 資料補寫與轉檔 ..................................................................................................................... 13
3.7 資料分析法與檢驗指標 ................................................................................................... 14
3.7.1 偏見評估標準 ......................................................................................................................... 14
3.7.2 正確性與內容平等性檢驗 ..................................................................................................... 14
3.8 統計分析法與檢驗指標 ................................................................................................... 15
3.8.1 偏向分布與顯著性檢驗 ......................................................................................................... 15
3.8.2 開放式回應語意分析 ............................................................................................................. 15
第四章 DEI 偏見選擇題分析 ...................................................................................... 17
4.1 綜觀選項分佈 ................................................................................................................... 17
4.1.1 GPT-3.5 綜觀選項分佈 ............................................................................................ 17
4.1.2 GPT-4 綜觀選項分佈 ............................................................................................... 18
4.1.3 GPT-4o 綜觀選項分佈 ............................................................................................. 19
4.1.4 GPT-4.1 綜觀選項分佈 ............................................................................................ 20
4.1.5 不同語言模型版本之綜觀選項比較分析 ............................................................... 21
4.2 語境結構對偏好傾向之影響分析 ................................................................................... 22
4.2.1 GPT-3.5 不同語境下和偏好傾向分析 .................................................................... 22
4.2.2 GPT-4 不同語境下和偏好傾向分析 ....................................................................... 24
4.2.3 GPT-4o 不同語境下和偏好傾向分析 ..................................................................... 25
4.2.4 GPT-4.1 不同語境下和偏好傾向分析 .................................................................... 26
4.2.5 不同語言模型版本之語境結構對選項偏好比較分析 ........................................... 28
4.3 封閉式選項資料分析:偏見分布與中立性傾向 ........................................................... 28
4.3.1 模型 × 語境的中立比例變異數分析 ..................................................................... 31
4.3.2 模型、語境與偏見主題之交互作用分析 ............................................................... 32
4.4 準確性與一致性分析 ....................................................................................................... 37
4.4.1 GPT-3.5 準確率於語境 × 問題類型 × 主題下的交互表現 ............................... 39
4.4.2 GPT-4 準確率於語境 × 問題類型 × 主題下的交互表現 .................................. 40
4.4.3 GPT-4o 準確率於語境 × 問題類型 × 主題下的交互表現 ................................. 41
4.4.4 GPT-4.1 準確率於語境 × 問題類型 × 主題下的交互表現 ................................ 43
4.4.5 不同語言模型版本之準確性整合比較分析 ........................................................... 44
4.5 模型偏見分數分析:依偏見類別與語境比較 ............................................................... 44
4.6 GPT 各模型結果語意分類 .............................................................................................. 46
4.6.1 分類方法與語意類別建構 ....................................................................................... 46
4.6.2 GPT 模型語意傾向總覽 .......................................................................................... 47
4.6.3 GPT 模型主題情境 × 語意分類 ............................................................................ 54
4.6.4 小節結語總結段落(各模型橫向分析) ............................................................... 62
4.6.5 潛在語意偏誤類型與風險分析 ............................................................................... 63
第五章 研究結論與建議 .............................................................................................. 69
5.1 研究結論 ........................................................................................................................... 69
5.2 研究建議 ........................................................................................................................... 70
5.3 企業倫理應用建議 ........................................................................................................... 71
5.4 研究限制與未來研究方向 ............................................................................................... 73
-
dc.language.isozh_TW-
dc.subject生成式 AIzh_TW
dc.subject大型語言模型zh_TW
dc.subjectGPTzh_TW
dc.subject語言偏見zh_TW
dc.subject多元zh_TW
dc.subject公平zh_TW
dc.subject包容zh_TW
dc.subjectDEIzh_TW
dc.subjectBusiness Ethicsen
dc.subjectGenerative AIen
dc.subjectGPTen
dc.subjectLarge Language Modelsen
dc.subjectLanguage Biasen
dc.subjectRisk Governanceen
dc.subjectDiversityen
dc.subjectFairnessen
dc.subjectInclusionen
dc.subjectDEIen
dc.titleAI 生成式模型在 DEI 議題中的語言偏見與公平性問題:以 GPT 模型為研究對象zh_TW
dc.titleLanguage Bias and Fairness Issues in AI Generative Models within DEI Contexts: The Case of GPT Modelsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor簡睿哲zh_TW
dc.contributor.coadvisorRuey-Jer Jeanen
dc.contributor.oralexamcommittee李家岩;孔令傑zh_TW
dc.contributor.oralexamcommitteeChia-Yen Lee;Ling-Chieh Kungen
dc.subject.keyword生成式 AI,大型語言模型,GPT,語言偏見,多元,公平,包容,DEI,zh_TW
dc.subject.keywordGenerative AI,GPT,Large Language Models,Language Bias,Diversity,Fairness,Inclusion,DEI,Business Ethics,Risk Governance,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202502270-
dc.rights.note未授權-
dc.date.accepted2025-08-01-
dc.contributor.author-college管理學院-
dc.contributor.author-dept商學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:商學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved