Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98426
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊國鑫zh_TW
dc.contributor.advisorKuo-Hsin Yangen
dc.contributor.author黃津津zh_TW
dc.contributor.authorChin-Chin Huangen
dc.date.accessioned2025-08-05T16:19:44Z-
dc.date.available2025-08-06-
dc.date.copyright2025-08-05-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation[1] 毛馨白. (2024).台北能源筏式基礎熱交換之行為與分析。國立臺灣大學土木工程學系學位論文, 1–83.
[2] 李鵬,、林憲德. (2018). 台灣垂直式地埋管熱交換特性及應用潛力研究-以台南實地實驗為例. 建築學報, (04), 21–34.
[3] 林素琴, 李浩銓、杜威達. (2013). 我國住宅部門能源耗用調查與應用分析, 冷凍空調與能源科技雜誌, (82), 30–36.
[4] 郭治平、廖洪鈞. (2017). 以臺北盆地地下水做為冷卻空調系統之介質. 地工技術, (152), 41–50.
[5] 劉衍淮. (1974). 台北盆地小氣候之研究. 大氣科學期刊, 1(1), 1–20.
[6] Alnefaie, K. A., and Abu-Hamdeh, N. H. (2013, September). Specific heat and volumetric heat capacity of some saudian soils as affected by moisture and density. In International conference on mechanics, fluids, heat, elasticity and electromagnetic fields (pp. 139-143).
[7] Alqawasmeh, Q. I., Narsilio, G. A., Makasis, N., and Kreitmair, M. J. (2024). The impact of soil layering and groundwater flow on energy pile thermal performance. Geomechanics for Energy and the Environment, 38, 100538.
[8] Amatya, B. L., Soga, K., Bourne-Webb, P. J., Amis, T., and Laloui, L. (2012). Thermo-mechanical behaviour of energy piles. Geotechnique, 62(6), 503-519.  
[9] Bandos, T. v., Montero, Á., Fernández, E., Santander, J. L. G., Isidro, J. M., Pérez, J., Córdoba, P. J. F. de, and Urchueguía, J. F. (2009). Finite line-source model for borehole heat exchangers: effect of vertical temperature variations. Geothermics, 38(2), 263-270.
[10] Bejan, A. (2013). Convection heat transfer. John wiley and sons.
[11] Cao, Q., Gong, S., Li, P., Wan, H., and Cheng, D. (2018). Correlation Analysis of Thermal Physical Indexes in Subway Engineering. IOP Conference Series: Materials Science and Engineering, 394, 032051.
[12] Chen, S., Cai, W., Witte, F., Wang, X., Wang, F., Kolditz, O., and Shao, H. (2021). Long-term thermal imbalance in large borehole heat exchangers array-A numerical study based on the Leicester project. Energy and Buildings, 231, 110518.
[13] Chen, S., Ding, B., Gong, L., Huang, Z., Yu, B., and Sun, S. (2020). Comparison of multi-field coupling numerical simulation in hot dry rock thermal exploitation of enhanced geothermal systems.
[14] Chiasson, A. D., Rees, S. J., and Spitler, J. D. (2000). A preliminary assessment of the effects of groundwater flow on closed-loop ground source heat pump systems. Oklahoma State Univ., Stillwater, OK (US).
[15] COMSOL. (2023). Heat Transfer Module Userˈs Guide (COMSOL 6.2). COMSOL Inc.
[16] Cui, Q., Shi, Y., Zhang, Y., Wu, R., and Jiao, Y. (2023). Comparative study on the thermal performance and economic efficiency of vertical and horizontal ground heat exchangers. Advances in Geo-Energy Research, 7(1), 7-19.
[17] Dong, Y., Zeng, Z., Zhu, H., Liu, Y., & Liang, M. (2021). Performance analysis of ground source heat pump system under low load rate. Thermal Science and Engineering, 4(2), 11.
[18] Eugster, W. J. (2007, May). Road and bridge heating using geothermal energy. Overview and examples. In Proceedings European geothermal congress (Vol. 2007). Unterhaching, Germany: European Geothermal Congress.
[19] Fang, W.-T., and Chien, C.-P. (2004). Soil Column Experiment in Determining Thermal Conductivity for Fully Saturated Soils. Journal of Chinese Agricultural Engineering, 50(1), 63-71.
[20] Farouki, O. T. (1986). Thermal properties of soils.
[21] Fujii, H., Okubo, H., Nishi, K., Itoi, R., Ohyama, K., and Shibata, K. (2009). An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers. Geothermics, 38(4), 399-406.
[22] Gehlin, S. (2002). Thermal Response Test Method Development and Evaluation.
[23] Han, C., and Yu, X. (2016). Sensitivity analysis of a vertical geothermal heat pump system. Applied Energy, 170, 148-160.
[24] Kazemi, H., and Ehyaei, M. A. (2018). Energy, exergy, and economic analysis of a geothermal power plant. Advances in Geo-Energy Research, 2(2), 190-209.
[25] Kim, M. J., Lee, S. R., Yoon, S., and Jeon, J. S. (2018). Evaluation of geometric factors influencing thermal performance of horizontal spiral-coil ground heat exchangers. Applied Thermal Engineering, 144, 788-796.
[26] Kuo, C., and Liao, H. (2012). The feasibility of using circulating groundwater as renewable energy sources for air-conditioning in Taipei basin. Renewable energy, 39(1), 175-182.
[27] Laloui, L., and Loria, A. F. R. (2019). Analysis and design of energy geostructures: theoretical essentials and practical application. Academic Press.
[28] Lei, X., Zheng, X., Duan, C., Ye, J., and Liu, K. (2019). Three-dimensional numerical simulation of geothermal field of buried pipe group coupled with heat and permeable groundwater. Energies, 12(19).
[29] Makasis, N., Narsilio, G. A., Bidarmaghz, A., Johnston, I. W., and Zhong, Y. (2020). The importance of boundary conditions on the modelling of energy retaining walls. Computers and Geotechnics,120.
[30] Meibodi, S. S., and Loveridge, F. (2022). The future role of energy geostructures in fifth generation district heating and cooling networks. Energy, 240.
[31] Mendrinos, D., Katsantonis, S., and Karytsas, C. (2017). Review of Alternative Pipe Materials for Exploiting Shallow Geothermal Energy. Innovations in Corrosion and Materials Science (Formerly Recent Patents on Corrosion Science), 7(1), 13-29.
[32] Miglani, S., Orehounig, K., and Carmeliet, J. (2018). A methodology to calculate long-term shallow geothermal energy potential for an urban neighbourhood. Energy and Buildings,159, 462-473.
[33] Ministry of Housing and Urban-Rural Development of the People’s Republic of China (2009). Technical code for ground-source heat pump system (GB 50366-2005). Beijing: China Architecture and Building Press
[34] Muther, T., Syed, F. I., Lancaster, A. T., Salsabila, F. D., Dahaghi, A. K., and Negahban, S. (2022). Geothermal 4.0: AI-enabled geothermal reservoir development-current status, potentials, limitations, and ways forward. Geothermics, 100, 102348.
[35] Ozudogru, T. Y., Olgun, C. G., and Senol, A. (2014). 3D numerical modeling of vertical geothermal heat exchangers. Geothermics, 51, 312-324.
[36] Pratama, I. T., Jello, J., Mao, X. B., Yang, K. H., Tsai, J. P., Baser, T., and Kuo, C. (2025). Investigation of the thermal response of an energy raft foundation in Taipei. Tunnelling and Underground Space Technology, 161, 106538.
[37] Reiter, M. B., Jello, J., and Baser, T. (2023). Thermo-hydro-mechanical behavior of energy foundations in saturated glacial tills. Geothermics, 108.
[38] Reiter, M. B., Kurtz, L., Attala, M. M., and Baser, T. (2020). Changes in shaft resistance and pore water pressures during heating of an energy foundation. E3S Web of Conferences, 205.
[39] Santa, G. D., Peron, F., Galgaro, A., Cultrera, M., Bertermann, D., Mueller, J., and Bernardi, A. (2017). Laboratory Measurements of Gravel Thermal Conductivity: An Update Methodological Approach. Energy Procedia, 125, 671-677.
[40] Signorelli, S., Bassetti, S., Pahud, D., and Kohl, T. (2007). Numerical evaluation of thermal response tests. Geothermics, 36(2), 141-166.
[41] Talebi, H. R., Kayan, B. A., Asadi, I., & Hassan, Z. F. B. A. (2020). Investigation of thermal properties of normal weight concrete for different strength classes. Journal of Environmental Treatment Techniques, 8(3), 908–914.
[42] U.S. Department of Energy. (2019). GeoVision: Harnessing the heat beneath our feet(DOE/EE-1306). U.S. Department of Energy.
[43] Yang, P., Xu, R., Wang, F., and Li, X. J. (2021). Numerical simulation and experimental validation on the heat transfer characteristics of horizontal spiral coil ground heat exchanger. Journal of Engineering Thermophysics, 42(8), 2122-2131.
[44] Yoon, S., Lee, S. R., and Go, G. H. (2015). Evaluation of thermal efficiency in different types of horizontal ground heat exchangers. Energy and Buildings, 105, 100-105.
[45] Zhang, G., Cao, Z., Zhao, X., Xie, Y., Liu, X., and Cao, S. (2021). Investigation of the thermal performance of energy tunnel equipped with the insulation layer considering ventilation and groundwater seepage. Geofluids, 2021(1), 6021585.
[46] Zhang, X., and Hu, Q. (2018). Development of geothermal resources in China: a review. Journal of Earth Science, 29(2), 452-467.
[47] Zhong, Y., Bidarmaghz, A., Narsilio, G. A., and Makasis, N. (2023). Thermo-hydraulic analysis in geothermal energy walls. Tunnelling and Underground Space Technology, 132.
[48] Zhu, C., Li, B., Wang, Y., Zhang, J., & Quan, C. (2023). Operation Optimization of Medium-Depth Ground Source Heat Pump (MD-GSHP) Systems Based on the Improved Particle Swarm Algorithm. Applied Sciences, 13(6), 3821.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98426-
dc.description.abstract台灣夏季氣候炎熱,導致冷氣使用頻繁,造成用電量上升與供電壓力增加。此外,冷氣運轉所產生的廢熱排放至周遭環境,進一步加劇以台北市為代表的都市熱島效應。能源基礎 (Energy Foundation) 作為一種兼具結構支撐與熱交換功能之新興綠能技術,提供有效解決方法。其原理係於基礎構造內部埋設地熱交換管,藉由地源熱泵系統 (Ground Source Heat Pump, GSHP) 驅動流體在管中循環,將冷房系統產生之廢熱傳導至地層中與低溫土壤進行熱交換,進而達到節能降耗並緩解熱島效應。
本研究以 COMSOL Multiphysics 建立熱–水力耦合數值模型,模擬分析台北地區一處實際能源筏式基礎案例。該案例採用HDPE 地熱交換管共40迴圈,總長達6720 m,埋設於筏基板中,並結合現地溫度監測資料進行模型驗證。研究進一步探討地下水條件(地下水位與流速)對出口流體溫度、土壤熱擴散效能與系統性能係數 (COP) 之影響。
此外,為驗證垂直式地源熱泵系統之可模擬性與模型可靠性,本研究以臺大農場實地設置之垂直熱交換井進行熱響應試驗 (Thermal Response Test, TRT),作為垂直系統數值模型之驗證依據。並採用與筏式基礎案例相同之土壤參數與初始地溫條件,進一步模擬不同鑽孔數量配置之垂直地埋熱交換器 (Borehole Heat Exchangers, BHE),並與水平筏式系統進行效能比較,探討兩種配置在不同地下水條件下之熱傳行為與COP表現,提供地熱系統實務應用與設計策略之參考。
zh_TW
dc.description.abstractTaiwan’s hot summers lead to heavy air-conditioning use, increasing electricity demand and intensifying the urban heat island effect–especially in Taipei. Energy foundations, which combine structural support with geothermal heat exchange, present a sustainable cooling strategy. This study employs COMSOL Multiphysics to build a coupled thermo-hydraulic model simulating an energy raft foundation in Taipei, featuring 40 loops of HDPE geothermal pipes (6720 m total length). Field data were used to validate the model, and parametric studies examined the effects of groundwater level and flow on outlet temperature and COP.
To verify vertical ground heat exchanger (BHE), modeling, a Thermal Response Test (TRT) was conducted at the NTU experimental farm. Using soil properties identical to those of the Taipei raft foundation site, simulations of various borehole configurations were performed and compared to the horizontal system. Results offer practical insights into optimizing geothermal system design under urban soil and groundwater conditions. environments.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:19:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-05T16:19:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract iv
目次 v
圖次 ix
表次 xi
第1章 緒論 1
1.1 研究背景與目的 1
1.2 研究方法 4
1.3 研究內容 4
第2章 文獻回顧 7
2.1 地熱能與地源熱泵概述 7
2.1.1 地熱能應用分類 7
2.1.2 地源熱泵系統類型與運作機制 9
2.1.3 垂直與水平型系統比較 12
2.2 能源地工構造介紹 14
2.2.1 能源地工構造概念與類型 14
2.2.2 能源地工與第五代DHC整合潛力 15
2.3 地下水流對熱傳效能的影響 17
2.3.1 地下水流速、流向與熱場分布關係 17
2.4 影響地源熱泵設計因素 20
2.5 熱傳參數與TRT技術 21
第3章 分析案例介紹 25
3.1 台北能源筏式基礎案例 25
3.1.1 案例位置與地熱管配置 25
3.1.2 施工過程 26
3.1.3 地質與水文條件 28
3.1.4 土壤溫度變化 30
3.2 臺大農場TRT 案例 31
3.2.1 案例位置和地熱管配置 31
3.2.2 施工過程 33
3.2.3 現地土壤 35
3.2.4 現地試驗結果與熱傳參數推估 36
第4章 數值模型建立與驗證 40
4.1 數值分析方法 40
4.2 耦合熱傳控制方程式 41
4.3 台北能源筏式基礎模型介紹 42
4.3.1 模型尺寸及網格配置 42
4.3.2 邊界條件 45
4.3.3 模型材料參數 46
4.4 臺大農場TRT模型介紹 47
4.4.1 模型尺寸及網格配置 47
4.4.2 邊界條件 48
4.4.3 模型材料參數 49
4.5 模型驗證 52
4.5.1 台北能源筏式基礎模型驗證 52
4.5.2 臺大農場TRT模型驗證 54
第5章 台北筏式基礎模型結果 57
5.1 熱交換影響分析 57
5.1.1 地熱交換管溫度分布變化 57
5.1.2 土壤溫度變化 60
5.2 地下水對熱傳效能影響 63
5.2.1 地下水位影響 63
5.2.2 地下水流速影響 67
第6章 地埋熱交換器分析與結果 73
6.1 模型設置與條件設定 73
6.2 模擬結果分析 76
6.2.1 地熱交換管溫度分布變化 76
6.2.2 不同鑽孔數下的土壤溫度變化 80
6.2.3 地埋熱交換器出口流體溫度與筏式基礎系統之比較 84
6.2.4 鑽孔數與地下水對總熱交換量之影響 86
第7章 綜合比較與效能評估 89
7.1 評估指標說明 89
7.2 水平式地埋熱交換器之效能分析 91
7.2.1 地下水位對熱交換性能之影響 91
7.2.2 地下水流速對熱交換性能之影響 94
7.3 垂直式地埋熱交換器之效能分析 96
7.3.1 鑽孔數對熱傳速率之影響 96
7.3.2 鑽孔數對COP之影響 98
7.4 水平式與垂直式系統之效能整合比較 99
第8章 結論與建議 102
8.1 結論 102
8.2 建議 104
參考文獻 105
-
dc.language.isozh_TW-
dc.subject熱響應試驗zh_TW
dc.subject地下水條件zh_TW
dc.subject性能係數zh_TW
dc.subject熱–水力耦合分析zh_TW
dc.subjectCOMSOL 數值模擬zh_TW
dc.subject能源筏式基礎zh_TW
dc.subject垂直地熱交換井zh_TW
dc.subjectGroundwater Conditionsen
dc.subjectEnergy Raft Foundationen
dc.subjectVertical Borehole Heat Exchanger (BHE)en
dc.subjectThermo-Hydraulic Coupling Analysisen
dc.subjectCOMSOL Numerical Simulationen
dc.subjectCoefficient of Performance (COP)en
dc.subjectThermal Response Test (TRT)en
dc.title地埋熱交換器與能源筏式基礎的熱–水行為之分析zh_TW
dc.titleThermo–hydraulic Responses of Borehole Heat Exchanger and Energy Raft Foundationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃郁惟;蔡瑞彬;汪柏岑;林穎凡zh_TW
dc.contributor.oralexamcommitteeYu-Wei Huang;Jui-Pin Tsai;Po-Tsen Wang;Ying-Fan Linen
dc.subject.keyword能源筏式基礎,熱響應試驗,COMSOL 數值模擬,熱–水力耦合分析,垂直地熱交換井,地下水條件,性能係數,zh_TW
dc.subject.keywordEnergy Raft Foundation,Thermal Response Test (TRT),COMSOL Numerical Simulation,Thermo-Hydraulic Coupling Analysis,Vertical Borehole Heat Exchanger (BHE),Groundwater Conditions,Coefficient of Performance (COP),en
dc.relation.page112-
dc.identifier.doi10.6342/NTU202502882-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-01-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2030-07-30-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-30
5.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved