請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9841
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊申語 | |
dc.contributor.author | Po-Hsun Huang | en |
dc.contributor.author | 黃柏勳 | zh_TW |
dc.date.accessioned | 2021-05-20T20:44:36Z | - |
dc.date.available | 2010-07-21 | |
dc.date.available | 2021-05-20T20:44:36Z | - |
dc.date.copyright | 2008-07-21 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-15 | |
dc.identifier.citation | [1] H. Becker, and C. Gärtner, “Polymer based micro-reactors,” Reviews in Molecular Biotechnology, Vol. 82, pp. 89-99 (2001).
[2] Jenoptik Mikrotechnik, Datasheet of HEX03 hot embossing system. (2002). [3] M. T. Gale, “Replicated Diffractive Optics and Micro-Optics”, Optics & Photonics News, Vol. 14, pp. 24-29, 2003. [4] M. Heckele and W. K. Schomburg, “Review on micro molding of thermoplastic polymers”, Journal of Micromechanics and Microengineering, Vol. 14, R1-R14, 2004. [5] 張哲豪,流體微熱壓製程開發研究,國立台灣大學博士論文,民國93年6月。 [6] Bender M, Otto M, Hadam B, et al. “Fabrication of nanostructures using a UV-based imprint technique,” Microelectronic Engineering, Vol. 53, pp. 233-236, 2000. [7] J. H. Chang and S. Y. Yang, “Gas Pressurized Hot Embossing for Transcription of Micro-features,” Microsystem Technologies, Vol. 10, pp76-80, 2003. [8] J. H. Chang, F. S. Cheng, C. C. Chao, Y. C. Weng, S. Y. Yang, and L. A. Wang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces”, J. Vac. Sci. Technol. A, Vol. 23, pp. 1687-1690, 2005. [9] J. H. Chang and S. Y. Yang, “Development of Fluid-Based Heating and Pressing Systems for Micro Hot Embossing,” Microsystem Technologies, Vol. 11, pp.396-403, 2005. [10] B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, and H. Kurz, “Large scale ultraviolet-based nanoimprint lithography,” J. Vac. Sci. Technol. B, Vol. 21 2760-2764, 2003. [11] H. Gao, H. Tan, W. Zhang, K. Morton, and S. Y. Chou, “Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field”, Nano Lett., Vol. 6, pp. 2438 -2441, 2006. [12] J. H. Jeong, K. D. Kim, Y. S. Sim, H. K. Sohu, and E. S. Lee, “A step-and-repeat UV-nanoimprint lithography process using an elementwise patterned stamp,” Microelectronic Engineering, Vol. 82, 2005, pp. 180-188. [13] H. Lee and G.. Y. Jung, “Wafer to wafer nano-imprinting lithography with monomer based thermally curable resin,” Microelectronic Eng., Vol. 77, pp.168-174, 2005. [14] H. Lee, S. Hong, K. Yang, and K. Choi, “Fabrication of nano-sized resist patterns on flexible plastic film using thermal curing nano-imprint lithography,” Microelectronic Eng., Vol. 83, pp.323-327, 2006. [15] M. L. Berre, J. Shi, C. Crozatier, G.. V. Casqquillars, and Y. Chen, “Micro-aspiration assisted lithography,” Microelectronic Enginnering, Vol. 84, pp. 864-867, 2007 [16] S. Y. Yang, F. S. Cheng, S. W. Xu, P. H. Huang, and T. C. Huang, “Fabrication of Microlens Arrays Using UV Micro-Stamping with Soft Roller and Gas-pressurized Platform” Microelectronic Engineering, Vol. 85, pp. 603-609, 2008. [17] F. S. Cheng, S. Y. Yang, and C. C. Chen, “Novel hydrostatic pressuring mechanism for soft UV-inprinting processes” Journal of Vacuum Science and Technology B, Vol. 26, pp. 132-136, 2008. [18] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, H. Nounu, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and Flash Imprint Lithography: A new approach to high-resolution patterning,” Proc. of SPIE, Vol. 3676, pp. 379-389, 1999. [19] P. Dannberg, R. Bierbaum, L. Erdmann, and A. Braeuer, “Wafer scale integration of micro-optic and optoelectronic elements by polymer UV reaction molding,” Proc. of SPIE, Vol. 3631, pp. 244-251, 1999. [20] S. M. Kim, D. Kim, and S. Kang, “Replication of micro-optical components by ultraviolet-molding process,” Journal of Microlithography, Microfabrication, and Microsystems, Vol. 2, pp. 356-359, 2003. [21] J. H. Jeong, K. D. Kim, D. G. Choi, J. H. Choi, and E. S. Lee, “Ultraviolet nanoimprint lithography applicable to thin-film transistor liquid-crystal display,” Proc. Of SPIE, Vol. 6517, 6517161-6517168, 2007. [22] S. J. Liu and Y. C. Chang, “A novel soft-mold roller embossing method for the rapid fabrication of micro-blocks onto glass substrate,” Journal of Micromechanics and Microengineering, Vol. 17, 172-179, 2007. [23] H. Lee, S. Hong, K. Yang, and K. Choi, “Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography,” Applied Physics Letters, Vol. 88, 143112, 2006. [24] S. H. Ahn, J. W. Cha, H. Myung, S. M. Kim and S. Kang, “Continuous ultraviolet roll nanoimprinting process for replicating large-scale nano- and micropatterns,” Appl. Phys. Lett., Vol. 89, pp. 2131011-2131013, 2006. [25] 陳雅雯,光學膜片紫外光固化轉寫成形之有限元素分析研究,國立交通大學碩士論文,民國92年6月。 [26] 黃俊瑋,以類LIGA技術與紫外光固化膠製作微透鏡陣列之新式製程設計探討,國立中興大學碩士論文,民國93年6月。 [27] 翁永春,氣輔軟模紫外光固化微奈米壓印製程應用於製作光波導元件之研究,國立台灣大學碩士論文,民國94年6月。 [28] 黃培穎,氣體輔助軟模壓印技術之研發應用於製作SU-8瘠樑式光波導元件,國立台灣大學碩士論文,民國95年6月。 [29] 朱眀輝,軟模低壓滾輪式轉印製程的研發與應用,國立台灣大學碩士論文,民國95年6月。 [30] 許淑雯,氣壓輔助滾輪紫外光轉印製程之開發與應用,國立台灣大學碩士論文,民國96年6月。 [31] C. Y. Chang, S. Y. Yang, L. S. Huang and K. H. Hsieh “Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer,” Optics Express, Vol. 14, pp. 6253-6258, 2006. [32] X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, and S. W. Pang, A. F. Yee, “Reversal imprinting by transferring polymer from mold to substrate”, J. Vac. Sci. Technol. B, Vol. 20, No. 6, pp. 2872-2876, 2002. [33] W. Hu, B. Yang, C. Peng, and S. W. Pang, “Three-dimensional SU-8 structures by reversal UV imprint,” J. Vac. Sci. Technol. B, Vol. 24, pp. 2225-2229, 2006. [34] B. Yang, C. Peng, and S. W. Pang, “Multiple level nanochannels fabricated using reversal UV nanoimprint,” J. Vac. Sci. Technol. B, Vol. 24, pp. 2984-2987, 2006. [35] N. Kehagias, V. Rebound, G. Chansin, M. Zelsmann, C. Jeppeses, C. Schuster, M. Kubenz, F. Reuther, G. Gruetzner, and C. M. Sotomayor Torres, “Reverse-contact UV nanoimprint lithography for multilayered structure fabrication”, Nanotechnology, Vol. 18, pp. 2954-2957, 2005. [36] K. S. Han, S. H. Hong, and H. Lee, “Fabrication of complex nanoscale structures on various substrates,” Applied Physics Letters, Vol. 91, 123118, 2007 [37] H. Hiroshima, S. Inoue, N. Kasahara, J. Taniguchi, I. Miyamoto, and M. Komoro, “Uniformity in patterns imprinted using photo-curable liquid polymer,” Jpn. J. Appl. Phys., Vol. 41, pp. 4173-4177, 2002. [38] A. Fuchs, M. Bender, U. Plachetka, U. Hermanns, and H. Kurz, “Ultraviolet-based nanoimprint at reduced environment pressure,” J. Vac. Sci. Technol. B, Vol. 23, pp. 2925-2928, 2005. [39] P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B, Vol. 17, pp. 2965-2969, 1999. [40] D. J. Resnick, S. V. Sreenivasan, and C. G. Wilison, “Step & flash imprint lithography,” Mater. Today, Vol. 8, pp. 34-42, 2005. [41] X. Liang, H. Tan, Z. Fu, and S. Y. Chou, “Air bubble formation and dissolution in dispensing nanoimprint,” Nanotechnology, Vol. 18, in press, 2007. [42] H. Hiroshima, M. Komuro, N. Kasahara, Y. Kurashima, and J. Taniguchi, “Elimination of pattern defects of nanoimprint under atmospheric conditions,” Jpn. J. Appl. Phys., Vol. 42, pp. 3849-3853, 2003. [43] H. Hiroshima and M. Komuro “Control of bubble defects in UV nanoimprint,” Jpn. J. Appl. Phys., Vol. 46, pp. 6391-6394, 2007. [44] H. Hiroshima and M. Komuro, “UV-nanoimprint with the assistance of gas condensation at atmospheric environment pressure,” J. Vac. Sci. Technol. B, Vol. 25 2333-2336, 2007. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9841 | - |
dc.description.abstract | 本研究致力於大面積壓印技術之開發,將結合紫外光固化成型技術、反轉式壓印成型技術及氣體輔助壓印製程,進行大面積之微結構複製,並搭配改良式的壓印機構來改善紫外光固化壓印成型最常見的氣泡問題,提供ㄧ個室溫、低壓、快速的大面積微結構複製技術。紫外光固化成型技術的運用,使整個壓印製程能夠在室溫低壓下進行,減少了升降溫所造成之變形及殘留應力等問題;運用反轉式壓印成型技術,壓印模具上之微結構模穴將被UV樹脂先充填完全,再進行壓印複製,可有效提高微結構之轉寫性;氣體輔助壓印技術其氣體施壓等向、等壓之特性使壓印壓力在整個大面積壓印區域能夠均勻分布,同時也能提高在各位置之微結構的複製成型均勻性。
實驗結果顯示,利用本研究所開發之大面積反轉式氣體輔助紫外光固化壓印製程能夠成功於大面積(230 mm × 203 mm)之壓克力基板上複製出微結構,而複製出之微結構具相當良好的複製均勻性與轉寫性,所製作出的大尺寸壓印成品沒有明顯的殘留應力與翹曲現象發生,成功結合紫外光固化壓印成型與氣體輔助壓印成型的機制與製程特性。另外,針對大面積壓印氣泡缺陷問題,本研究利用反轉式壓印技術結合彈簧式基板載具以改善壓印製程中抽真空的效率,實驗結果也証明能夠成功消除大面積壓印的氣泡缺陷問題,提供ㄧ個操作簡單且低成本的氣泡缺陷改善技術。而反轉式壓印技術的導入,並改良其壓印機制,更可有效提高整個大面壓印具區域的微結構高度轉寫率達99%以上,不受壓印製程參數所影響。本研究結合紫外光固化壓印成型、氣體輔助壓印成型以及改良式反轉式壓印成型技術,成功開發出一大面積微結構光學元件製作技術,預期可運用於大面積薄型導光板、擴散板、微透鏡陣列等光學元件之製作。 | zh_TW |
dc.description.abstract | This study is devoted to developing a process for effective fabrication of large-area microstructures at room temperature and with low imprinting pressure. This process integrates the ultraviolet-curing (UV-curing) imprinting process, the gas-assisted imprinting process, and the reversal imprinting process to fabricate the microstructures onto the large area substrate. The UV-curing imprinting enables the process to perform without heating and cooling and under low pressure, while the gas-assisted embossing provides the uniform pressing pressure over the whole large area. By using gas-assisted and UV-curing mechanisms, the high temperature and high pressure can be avoided. With the reversal imprinting mechanism, the UV resin is coated onto the stmaper with microstructures cavity rather than the substrate, and is completely filled into the cavity then imprinting. In addition, in this study the reversal imprinting is incorporated with a gap-retained substrate holder to overcome the problem of air bubble defects.
The experimental results show that the microstructures can be successfully fabricated onto the whole large area (230 mm × 203 mm) substrate with high replication uniformity and negligible residual stress by using the proposed process. The imprinting results also show the negligible air bubble defects, demonstrating the effectiveness of air bubble removing using reversal imprinting technique and gap-retained substrate holder. In addition, the modified reversal imprinting mechanism can effectively enhance the height transcription of microstructures without the control of imprinting processing parameters. In summary, this study has successfully developed a large area gas-assisted UV-curing reversal imprinting process for the large area fabrication of microstructures, which shows the potential of being applied to the large-area optical elements such as ultra-thin light guide plates, diffusers, large array of microlens, etc. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:44:36Z (GMT). No. of bitstreams: 1 ntu-97-R95522705-1.pdf: 8127259 bytes, checksum: 29319bc35c350cf484e5b09c7825e55b (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 致 謝 I
摘 要 II Abstract III 目 錄 IV 圖目錄 VII 表目錄 XII 第一章 導論 1 1.1前言 1 1.2 微熱壓成型製程 2 1.3 氣體輔助微熱壓成型製程 3 1.4 紫外光固化奈米壓印製程(UV-NIL) 4 1.5 具體研究方向與目標 4 1.6 論文內容與架構 5 第二章 文獻回顧 10 2.1氣體輔助壓印成型技術 10 2.2紫外光固化壓印成型技術 12 2.3 反轉式壓印成型技術 (Reversal Imprinting) 13 2.4 氣泡成型缺陷問題與改善 14 2.5 綜合歸納 15 第三章 反轉式氣輔UV壓印製程之初步實驗探討 35 3.1壓印模腔及相關設備 35 3.2壓印模具及相關材料製備 36 3.3壓印製程參數 37 3.4反轉式氣體輔助UV壓印製程 37 3.5小面積壓印結果與討論 38 3.6 本章結論 40 第四章 應用於大面積微結構複製之實驗探討 58 4.1製程特性分析 58 4.2壓印模具及其他相關材料備製 59 4.2.1 壓印模具 59 4.2.2 壓印基板(substrate)與紫外光固化樹脂(UV-cured resin) 60 4.2.3 UV固化樹脂塗佈方式 60 4.3大面積反轉式氣體輔助UV壓印設備與製程 61 4.3.1 壓印設備 61 4.3.2 壓印製程步驟 63 4.3.3 壓印成型參數 63 4.4 壓印結果與討論 64 4.5 本章結論 65 第五章 改良式大面積微結構壓印製程之探討 84 5.1 改良式壓印製程原理 84 5.2 彈簧式基板載具之設計與開發 85 5.3 改良式壓印製程設備與相關材料 85 5.3.1 壓印設備 85 5.3.2 壓印模具 86 5.3.3 壓印基板(substrate)與紫外光固化樹脂(UV-cured resin) 86 5.3.4 壓印成型參數 86 5.3.5 壓印製程步驟 87 5.4 壓印結果與討論 88 5.4.1 大面積壓印結果 88 5.4.2 微結構複製結果 88 5.4.3 大面積微結構複製均勻性與高度轉寫性 89 5.4.4 大面積壓印成品殘留應力檢測結果 90 5.4.5 微結構光學檢測結果 90 5.4.6 微結構成品表面粗度檢測結果 91 5.5 本章結論 91 第六章 結論與未來研究方向 109 6.1 研究成果總結 109 6.2 原始貢獻 110 6.3 未來研究方向 111 參考文獻 119 附錄一 作者簡介 124 附錄二 個人著作 125 | |
dc.language.iso | zh-TW | |
dc.title | 反轉式氣輔UV壓印製程應用於大面積微結構之複製 | zh_TW |
dc.title | Gas-Assisted UV-Based Complete Reversal Imprinting Process for Large-Area Replication of Microstructures | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳炤彰,施文彬,劉士榮,沈永康 | |
dc.subject.keyword | UV壓印,反轉式壓印,氣輔壓印, | zh_TW |
dc.subject.keyword | UV imprinting,reversal imprinting,gas-assisted imprinting, | en |
dc.relation.page | 127 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2008-07-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf | 7.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。