請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98416完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳茵茵 | zh_TW |
| dc.contributor.advisor | Yin-Yin Wu | en |
| dc.contributor.author | 蔡姮瑩 | zh_TW |
| dc.contributor.author | Heng-Ying Tsai | en |
| dc.date.accessioned | 2025-08-05T16:17:19Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2025-08-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | CtiTv (2020)。【#中天最新LIVE】2020美國總統大選 第三場辯論會(現場同步翻譯)|2020.10.23 [影片]。YouTube。2025年2月18日,取自:https://www.youtube.com/live/bvJhul8RWi8?si=oCAtLgNRwczyr4Bf
CTV (2020)。【現場直擊】2020美國總統大選辯論最終場(同步口譯)20201023 [影片]。YouTube。2025年2月18日,取自:https://www.youtube.com/watch?v=FDYPWMz3sQE TVBS NEWS (2024a)。[中文口譯]🔴6/2LIVE19:00黃仁勳主題演講全程直播!NVIDIA CEO Jensen Huang’s Keynote- AI人工智慧時代如何帶動全球新產業革命發展 COMPUTEX2024 [影片]。YouTube。2025年2月18日,取自:https://www.youtube.com/live/lp2xDN1HcwM?si=B_vzxr1HQv7M0p1C 范蔚敏 (n.d.)。生成式AI工具使用指南 [簡報]。 https://www.lib.ntu.edu.tw/img/tulblog/HELP/HELP_20240912_AI.pdf 許建平 (2003)。英漢互譯實踐與技巧(第二版)。清華大學出版社。 蔡毓芬 (2015)。運用學習者語料庫探討學生譯文的被動語態和形容詞子句。英語教學,39(1),127–147。https://doi.org/10.6330/ETL.2015.39.1.05 錢文娟 (2013)。英語定語從句的翻譯。輕工科技,11,167-168。 嚴盡忠 (2013)。英語定語從句漢譯方式探究。和田師範專科學校學報,32(1),93-95。 AIIC. (2025). Report on WORDLY AI interpretation. https://aiic.fr/wp-content/uploads/2025/06/rapport-oms.pdf Alibaba Cloud. (2018). Translating 100 billion words every day for E-Commerce with Alibaba Machine Translation. Medium. Retrieved July 24, 2025, from https://alibaba-cloud.medium.com/translating-100-billion-words-every-day-for-e-commerce-with-alibaba-machine-translation-b592ae52f697 Center for Teaching and Learning Development & Digital Learning Center. (n.d.). Guidance for use of Generative AI tools for teaching and learning. Retrieved June 10, 2025, from https://www.dlc.ntu.edu.tw/ai-tools/ Chang, C., & Schallert, D. L. (2007). The impact of directionality on Chinese/English simultaneous interpreting. Interpreting International Journal of Research and Practice in Interpreting, 9(2), 137–176. https://doi.org/10.1075/intp.9.2.02cha Chang, H. F. (2008). A study on GITI students’ ST difficulty & performance. SPECTRUM: Studies in Language, Literature, Translation, and Interpretation, 2, 61-83. Chen, J. G. (2006). Contrastive research & crosslinguistic influence: Some implications for teaching Chinese and English as a second language. Taipei: Crane. Chen, Q., & Ke, Q. (2008). On translating English relative clauses into Chinese. Canadian Social Science, 4(6), 35–40. Chmiel, A., Kajzer-Wietrzny, M., Koržinek, D., Jakubowski, D., & Janikowski, P. (2024). Syntax, stress and cognitive load, or on syntactic processing in simultaneous interpreting. Translation Cognition & Behavior, 7(1), 22–47. https://doi.org/10.1075/tcb.00091.chm Chuang, S. (2021). The influence of syntactic complexity on experienced and novice interpreters in simultaneous interpreting [Master’s thesis, National Taiwan University]. Ariti Library. Dawrant, A. (1996). Word order in Chinese-English simultaneous interpretation: An initial exploration. [Unpublished master’s thesis, Fu Jen University]. Gile, D. (1995). Basic concepts and models for interpreter and translator training. John Benjamins. Gile, D. (1997). Conference interpreting as a cognitive management problem. In Cognitive processes in translation and interpreting, ed. J.H. Danks, G.M. Shreve, S.B. Fountain, and M. McBeath, 196–214. Thousand Oaks, CA: SAGE Publications. Gile, D. (1999). Testing the effort model’s tightrope hypothesis in simultaneous interpreting— A contribution. Hermes 22: 51–79. Gile, D. (2005). Directionality in conference interpreting: A cognitive view. Communication & Cognition, 38, 9–26. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16851318 Gile, D. (2009). Basic concepts and models for interpreter and translator training, Revised ed. John Benjamins. Gile, D. (2011). Errors, omissions and infelicities in broadcast interpreting: Preliminary findings from a case study. In Methods and strategies of process research: Integrative approaches in translation studies, ed. C. Alvstad, A. Hild, and E. Tiselius, 201–218. John Benjamins. Giustini, D., & Dastyar, V. (2024). Critical AI literacy for interpreting in the age of AI. Interpreting and Society, 4(2), 1–18. https://doi.org/10.1177/27523810241247259 Guo, L. L. (2011). An analysis of the word order pattern in the SI target language and its underlying reasons in the language combination of English and Chinese. [Unpublished PhD dissertation, Shanghai International Studies University]. Ho, C. E. (2017). An integrated eye-tracking study into the cognitive process of English-Chinese sight translation: Impacts of training and experience. National Taiwan Normal University. Her, O.-S. (2009). Unifying the long passive and the short passive: On the bei construction in Taiwan Mandarin. Language and Linguistics, 10, 421-470. Hu, K., & Tao, Q. (2014). The Chinese-English conference interpreting corpus: Uses and limitations. Meta, 58(3), 626–642. https://doi.org/10.7202/1025055ar Lai, J.-L. (2024). A corpus-based study on problem triggers and strategies in English-to-Chinese Simultaneous Interpreting [MA thesis, National Taiwan University]. https://doi.org/10.6342/NTU202404623 Lin, C.-J. C. (2011). Chinese and English relative clauses: Processing constraints and typological consequences. [Paper presentation]. 23rd North American Conference on Chinese Linguistics (NACCL-23), Eugene, OR. Liu, Y., & Liang, J. (2024). Multidimensional comparison of Chinese-English interpreting outputs from human and machine: Implications for interpreting education in the machine-translation age. Linguistics and Education, 80. https://doi.org/10.1016/j.linged.2024.101273 Ma, X., & Cheung, A. K. F. (2020). Language interference in English-Chinese simultaneous interpreting with and without text. Babel, 66(3), 434–456. https://doi.org/10.1075/babel.00168.che Ma, X. C. (2019). Effect of word order asymmetry on cognitive process of English-Chinese sight translation by interpreting trainees—evidence from eye-tracking. [The PhD dissertation, Hong Kong Polytechnic University]. PBS NewsHour. (2024a). Biden vs. Trump: The first 2020 presidential debate [Video]. YouTube. Retrieved February 22, 2025, from https://www.youtube.com/watch?v=y_F2vq3zeRk PBS NewsHour. (2024b). Biden vs. Trump: The second 2020 presidential debate [Video]. YouTube. Retrieved February 18, 2025, from https://www.youtube.com/watch?v=uLvKaUi8VXw Pöchhacker, F. (2024). Is machine interpreting interpreting? Translation Spaces. https://doi.org/10.1075/ts.23028.poc Pym, A. (2015). Translating as risk management. Journal of Pragmatics, 85, 67–80. https://doi.org/10.1016/j.pragma.2015.06.010 Pym, A. (2020). Translation, risk management and cognition. In The Routledge Handbook of Translation and Cognition (pp. 445–458). https://doi.org/10.4324/9781315178127 Seeber, K. (2007). Cognitive load in simultaneous interpreting: A psychophysiological approach to identifying differences between syntacticly symmetrical and asymmetrical language structures. [Unpublished PhD dissertation, University of Geneva]. Seeber, K. G., & Kerzel, D. (2011). Cognitive load in simultaneous interpreting: Model meets data. International Journal of Bilingualism, 16(2), 228–242. https://doi.org/10.1177/1367006911402982 Setton, R. (1999). Simultaneous interpretation. John Benjamins Publishing Company. https://doi.org/10.1075/btl.28 TVBS NEWS. (2024b). [原音ENG CC]🔴6/2LIVE19:00 黃仁勳主題演講全程直播!NVIDIA CEO Jensen Huang’s Keynote- The Era of AI | COMPUTEX 2024 [Video]. YouTube. Retrieved February 18, 2025, from https://www.youtube.com/watch?v=NbCaQ9IWMbc Uchiyama, H. (1991). Problems caused by word order when interpreting/translating from English into Japanese: The effect of the use of inanimate subjects in English. Meta 34 (2/3): 404–413. Wang, B. (2012). Interpreting Strategies in Real-life Interpreting– Corpus-based description of seven professional interpreters’ performance. Retrieved July 23, 2025, from https://translationjournal.net/journal/60interpreting.htm Wang, B., & Gu, Y. (2016). An evidence-based exploration into the effect of language-pair specificity in English-Chinese simultaneous interpreting. Asia Pacific Translation and Intercultural Studies, 3(2), 146–160. https://doi.org/10.1080/23306343.2016.1182238 Wang, B., & Li, T. (2014). An empirical study of pauses in Chinese-English simultaneous interpreting. Perspectives, 23(1), 124–142. https://doi.org/10.1080/0907676x.2014.948885 Wang, B., & Zou, B. (2017). Exploring Language specificity as a variable in Chinese-English interpreting. A Corpus-Based Investigation. In New frontiers in translation studies (pp. 65–82). https://doi.org/10.1007/978-981-10-6199-8_4 Wordly. (n.d.). Wordly AI Translation - #1 Meetings and Events Solution. Retrieved June 5, 2025, from https://www.wordly.ai/ Wilss, W. (1978). Syntactic anticipation in German-English simultaneous interpreting. In Language interpretation and communication, ed. D. Gerver, and H.W. Sinaiko, 343–352. New York: Plenum. Wu, S. (2012). Passive voice in Chinese and English—Analysis of passive voice errors made by Chinese EFL learners. Unpublished manuscript. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98416 | - |
| dc.description.abstract | 本研究以語料庫為基礎,探討人類口譯員與人工智慧系統於英進中同步口譯處理英語關係子句之處理方式差異。研究分析取自政治辯論及科技演講的真實人類口譯資料,以及Claude 3.5 Sonnet V2與Wordly.ai的機器翻譯,指出人類與人工智慧系統在語法與語意處理方式上的明顯差異。研究結果顯示,人類口譯員傾向運用較多元的語法處理方式,包括順譯(40.97%)、重組(22.47%)、先行詞刪除(11.89%)、省略(8.37%)、關係子句刪除(8.37%)及改述(7.93%)。人類口譯員亦常採用語意簡化(28.19%),通常似乎是為了解決時間壓力,並優先排序主要訊息。此外,研究亦發現人類口譯員會使用增譯(11.89%),可能是為了釐清講者訊息或增強語句銜接,並可能有助於促進聽眾參與。相較之下,人工智慧系統主要採用重組(48.76%)與順譯(44.49%),經常高度保留原意,但較少採用增譯(7.64%)或簡化(0.45%)。人工智慧系統產出似乎缺乏釐清講者溝通目的或為聽眾調整訊息的溝通彈性,且似乎在結構分析與語境理解上遇到挑戰。此研究補足英進中口譯關係子句實證研究之不足,並為口譯教學、人工智慧系統優化及未來人機協作提供參考建議。 | zh_TW |
| dc.description.abstract | This corpus-based study investigated how human interpreters and artificial intelligence (AI) systems manage English relative clauses during English-to-Chinese simultaneous interpretation. By analyzing authentic human interpretation data and machine-generated translations from Claude 3.5 Sonnet V2 and Wordly.ai, sourced from a political debate and a technical speech, the study identified notable differences in syntactic and semantic approaches between humans and AI systems. The findings suggested that human interpreters tend to employ a broader range of syntactic approaches —including Syntactic Linearity (40.97%), Restructuring (22.47%), Deletion of the Antecedent (11.89%), Omission (8.37%), Deletion of the Relative Clause (8.37%), and Paraphrasing (7.93%). Humans also frequently use semantic Simplification (28.19%), which often appears to be a response to time constraints. Addition (11.89%) is also observed, which may serve to clarify the speaker’s message or enhance cohesion, and could potentially facilitate audience engagement. In contrast, AI outputs predominantly exhibit Restructuring (48.76%) and Syntactic Linearity (44.49%), largely retaining the original message while showing limited instances of Addition (7.64%) or Simplification (0.45%). AI outputs appear to lack the communicative flexibility to clarify the speaker’s intent or adapt to the audience and seem to encounter challenges in structural parsing and contextual understanding. These findings contribute to the limited empirical research on relative clauses in English-to-Chinese interpretation and provide insights for interpreter training, AI system improvement, and future human–machine collaboration. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:17:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-05T16:17:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
Abstract (English) ii Abstract (Chinese) iii Table of Contents iv List of Tables viii List of Figures ix Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Problem Triggers 4 2.2 Language Specificity 4 2.3 Syntactic Differences 5 2.4 Studies on Handling Syntactic Differences Between Chinese and English 6 2.4.1 Translation 7 2.4.2 Sight Translation 8 2.4.3 Interpretation 8 Chapter 3 Research Methods 11 3.1 Corpora Description 11 3.1.1 The Human Interpretation Corpus 11 3.1.2 The AI Translation Corpus 13 3.2 Data Analysis 18 3.2.1 The Approach Taxonomy 19 3.2.2 The Reason Taxonomy 21 3.3 Pilot Study 27 3.4 Use of AI in Writing 29 Chapter 4 Patterns of Human Interpretation 32 4.1 Quantitative Results 32 4.1.1 Frequencies of Syntactic and Semantic Approaches 32 4.1.2 Possible Reasons Behind Each Approach 34 4.1.3 Errors 38 4.2 Qualitative Results 39 4.2.1 Syntactic Linearity 40 4.2.2 Restructuring 44 4.2.3 Deletion of the Antecedent 44 4.2.4 Omission 47 4.2.5 Deletion of the Relative Clause 50 4.2.6 Paraphrasing 53 4.2.7 Simplification 55 4.2.8 Addition 61 4.2.9 Simplification+Addition 63 4.2.10 Errors 65 4.3 Generalizable Insights 70 Chapter 5 Patterns of Al Systems 72 5.1 Quantitative Results 72 5.1.1 Frequencies of Syntactic and Semantic Approaches 72 5.1.2 Possible Reasons Behind Each Approach 74 5.1.3 Errors 77 5.2 Qualitative Results 78 5.2.1 Restructuring 79 5.2.2 Syntactic Linearity 81 5.2.3 Deletion of the Antecedent 86 5.2.4 Deletion of the Relative Clause 87 5.2.5 Omission 88 5.2.6 Addition 89 5.2.7 Simplification 92 5.2.8 Errors 95 5.3 Generalizable Insights 100 Chapter 6 Discussion and Conclusion 102 6.1 Discussion of Findings 102 6.1.1 Findings 102 6.1.2 Discussions 106 6.1.3 Implications 110 6.1.4 Contributions 113 6.2 Limitations 115 6.3 Future Directions 116 References 117 Appendix A Claude’s Prompting Process 123 Appendix B Screenshots of Output from Wordly 131 Appendix C Screenshots of Approach and Reason Analysis 133 Appendix D Distribution of Humans' and AI Systems’ Approaches Across Speeches 137 Appendix E Examples of Wordly’s Wrong Voice Recognition and Mispresented Terms 140 Appendix F Examples of Wordly’s Segmentation Issues 142 | - |
| dc.language.iso | en | - |
| dc.subject | 同步口譯 | zh_TW |
| dc.subject | 關係子句 | zh_TW |
| dc.subject | 語料庫分析 | zh_TW |
| dc.subject | 人工智慧系統 | zh_TW |
| dc.subject | 人類口譯員 | zh_TW |
| dc.subject | 處理方式差異 | zh_TW |
| dc.subject | corpus-based analysis | en |
| dc.subject | simultaneous interpretation | en |
| dc.subject | relative clauses | en |
| dc.subject | approach differences | en |
| dc.subject | artificial intelligence systems | en |
| dc.subject | human interpreters | en |
| dc.title | 同步口譯之英語關係子句處理:人類與人工智慧輸出之語料庫研究 | zh_TW |
| dc.title | Processing English Relative Clauses in Simultaneous Interpretation: A Corpus Study of Human and AI Outputs | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 金瑄桓;范家銘 | zh_TW |
| dc.contributor.oralexamcommittee | Syuan-Huan Jin;Damien Chiaming Fan | en |
| dc.subject.keyword | 同步口譯,關係子句,語料庫分析,人工智慧系統,人類口譯員,處理方式差異, | zh_TW |
| dc.subject.keyword | simultaneous interpretation,relative clauses,corpus-based analysis,artificial intelligence systems,human interpreters,approach differences, | en |
| dc.relation.page | 152 | - |
| dc.identifier.doi | 10.6342/NTU202502799 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-02 | - |
| dc.contributor.author-college | 文學院 | - |
| dc.contributor.author-dept | 翻譯碩士學位學程 | - |
| dc.date.embargo-lift | 2025-08-06 | - |
| 顯示於系所單位: | 翻譯碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
