請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98415完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中平 | zh_TW |
| dc.contributor.advisor | Chung-Ping Chen | en |
| dc.contributor.author | 郭政緯 | zh_TW |
| dc.contributor.author | Zheng-Wei Kuo | en |
| dc.date.accessioned | 2025-08-05T16:17:03Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2025-08-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | T. Carusone, D. Johns, and K. Martin, Analog Integrated Circuit Design. Analog Integrated Circuit Design, Wiley, 2011.
P. Allen and D. Holberg, CMOS Analog Circuit Design. The Oxford Series in Electrical and Computer Engineering, OUP USA, 2011. W. Wu, T. Wei, X. Fan, and F. Chen, “DAC Circuit with Multi-threshold Voltage for TFT-LCD Driver IC,” in 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics, pp. 304–308, Oct. 2007. I. Knausz and R. J. Bowman, “A Low Power, Scalable, DAC Architecture for Liquid Crystal Display Drivers,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 2402–2410, Sept. 2009. C.-W. Lu, C.-C. Shen, and W.-C. Chen, “An Area-Efficient Fully R-DAC-Based TFT-LCD Column Driver,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, pp. 2588–2601, Oct. 2010. Y.-K. Choi, Z.-Y. Wu, K. Kim, Y. Lee, M. Cho, H. Kim, D. Lee, and W.-G. Jung, “A Compact Low-Power CDAC Architecture for Mobile TFT-LCD Driver ICs,” in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, pp. 176–605, Feb. 2008. ISSN: 2376-8606. C.-W. Lu, P.-Y. Yin, C.-M. Hsiao, M.-C. F. Chang, and Y.-S. Lin, “A 10-bit Resistor-Floating-Resistor-String DAC (RFR-DAC) for High Color-Depth LCD Driver ICs,” IEEE Journal of Solid-State Circuits, vol. 47, pp. 2454–2466, Oct. 2012. J.-S. Kim, J.-O. Yoon, and B.-D. Choi, “A low-area 10b column driver with resistor-resistor-string DAC for mobile active-matrix LCDs,” in 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 548–550, Oct. 2016. D.-K. Jung, Y.-H. Jung, T. Yoo, D.-H. Yoon, B.-Y. Jung, T. T.-H. Kim, and K.-H. Baek, “A 12-bit Multi-Channel R-R DAC Using a Shared Resistor String Scheme for Area-Efficient Display Source Driver,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, pp. 3688–3697, Nov. 2018. C.-W. Lu, P.-Y. Yin, and M.-Y. Lin, “A 10-bit Two-Stage R-DAC With Isolating Source Followers for TFT-LCD and AMOLED Column-Driver ICs,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, pp. 326– 336, Feb. 2019. Z. Shi, A. Guo, J. Liu, and J. Zhang, “A fully non-linear column driver with a compact 12-bit DAC for LEDoS displays,” IEICE Electronics Express, vol. 22, no. 1, pp. 20240578–20240578, 2025. P.-Y. Yin, C.-W. Lu, C.-Y. Hsu, and Y.-S. Lin, “An 11-bit Two-Stage Hybrid-DAC for TFT LCD Column Drivers,” in Modelling and Simulation 2013 4th International Conference on Intelligent Systems, pp. 631–635, Jan. 2013. ISSN: 2166-0670. H.-S. Kim, J.-H. Yang, S.-H. Park, S.-T. Ryu, and G.-H. Cho, “A 5.6mV interchannel DVO 10b column-driver IC with mismatch-free switched-capacitor interpolation for mobile active-matrix LCDs,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 392–393, Feb. 2013. ISSN: 2376-8606. H.-C. Seol, S.-K. Hong, and O.-K. Kwon, “A small-area and low-power data driver IC using two-stage DAC with a capacitor array for active matrix flatpanel displays,” Journal of the Society for Information Display, vol. 25, no. 1, pp. 4–11, 2017. _eprint: https://sid.onlinelibrary.wiley.com/doi/pdf/10.1002/jsid.526. H. Qiu, J. Liang, W. Bai, H.-M. Lam, J. An, C. Liao, M. Zhang, H. Jiao, and S. Zhang, “A Compensation System using Analog Voltage Adder with Continuous Output for AMOLED Display Drivers,” in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, Oct. 2020. ISSN: 2158-1525. G.-G. Kang, S.-T. Koh, W. Jang, J. Lee, S. Lee, O. Kwon, K. Jung, and H.-S. Kim, “A 12-Bit Mobile OLED/ LED Display Driver IC with Cascaded Loading-Free Capacitive Interpolation DAC and 6.24V/ s-Slew-Rate Buffer Amplifier,” in 2021 Symposium on VLSI Circuits, pp. 1–2, June 2021. ISSN: 2158-5636. Y.-J. Jeon, H.-M. Lee, S.-W. Lee, G.-H. Cho, H. R. Kim, Y.-K. Choi, and M. Lee, “A Piecewise Linear 10 Bit DAC Architecture With Drain Current Modulation for Compact LCD Driver ICs,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3659–3675, Dec. 2009. H. G. Li, X. Y. Yin, and Z. Y. Zhang, “High-Precision Mixed Modulation DAC for an 8-Bit AMOLED Driver IC,” Journal of Display Technology, vol. 11, pp. 423–429, May 2015. T. Huang and H. G. Li, “Based on programmable current buffer 10-bit DAC for AMOLED source driver,” in 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 1–2, Oct. 2017. H.-M. Lee, Y.-J. Jeon, S.-W. Lee, B. Lee, and G.-H. Cho, “An Area and Power Efficient Interpolation Scheme Using Variable Current Control for 10-Bit Data Drivers in Mobile Active-Matrix LCDs,” IEEE Transactions on Consumer Electronics, vol. 65, pp. 253–262, May 2019. J. van der Wagt, G. Chu, and C. Conrad, “A layout structure for matching many integrated resistors,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 1, pp. 186–190, 2004. R. Hogervorst, J. Tero, R. Eschauzier, and J. Huijsing, “A compact powerefficient 3 v cmos rail-to-rail input/output operational amplifier for vlsi cell libraries,” IEEE Journal of Solid-State Circuits, vol. 29, no. 12, pp. 1505–1513, 1994. B. Razavi, Design of analog CMOS integrated circuits /. Chennai :: McGraw-Hill„ 2nd ed. ed., 2018/ 5th reprint 2019. Include index. X. Guo and H. Li, “A 10-bit Area-efficient Source Driver for Printed OLED Display,” in 2019 32nd IEEE International System-on-Chip Conference (SOCC), pp. 17–20, Sept. 2019. ISSN: 2164-1706. X. Guo and H. Li, “Gray Code-Based 10-Bit Source Driver for Large-Size OLED Display,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, pp. 2307–2311, July 2021. S. H. Choi, J. Kim, J. Ahn, J. An, J. Kim, O. Kwon, K.-D. Kim, and H.-M. Lee, “An Area and Power Efficient Fully Nonlinear 10-bit Column Driver with Time-Shared Multi-Gamma-Slope DAC and Time-Interleaved Sampling Buffer for Mobile AMOLEDs,” in 2023 IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 1–3, Nov. 2023. Y. Park, G.-G. Kang, G.-W. Lim, S. Shin, Y.-S. Ahn, W. Kim, and H.-S. Kim, “A 10-bit Source-Driver IC With Charge-Modulation DAC for Enhanced Frame-Rate Mobile OLED Displays,” IEEE Journal of Solid-State Circuits, vol. 59, pp. 3511–3524, Nov. 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98415 | - |
| dc.description.abstract | 本論文提出一具備高線性度、低功耗且具備緊湊面積的10 位元雙階段式數位類比轉換器。隨著現代電子產品朝向高整合度、高精度與低功耗方向發展,數位類比轉換器在整體系統中扮演關鍵角色,對於其解析度、線性度、面積效率與功耗等方面的性能需求也日益嚴苛。
為因應上述挑戰,本研究採用雙階段架構,以兼顧解析度與面積效率。第一級為6 位元電阻串式數位類比轉換器,第二級則為嵌入4 位元數位類比轉換器的運算放大器,以提升整體面積效率。此外,於第二級中導入電流分流轉導調變技術,進一步提升線性度,同時不引入額外的靜態功耗。 本晶片使用台積電180 奈米互補式金氧半製程製程實現,單通道面積為13787 μm^2。根據量測結果,數位類比轉換器穩態時間為3.6 μs,最大差分非線性與積分非線性分別為1.81 LSB 與1.72 LSB,其中1 LSB 對應3.125 mV 。該電路的功耗為298 μW,整體性能符合現代高性能數位類比轉換器需求。 | zh_TW |
| dc.description.abstract | This thesis proposes a compact, linear, and power-efficient 10-bit two-stage digital-to-analog converter (DAC). As modern electronic systems evolve toward higher integration, precision, and energy efficiency, the performance demands on DACs have become increasingly stringent, such as resolution, linearity, area efficiency, and power consumption.
To address these challenges, the proposed DAC adopts a two-stage architecture, with the first stage consisting of a 6-bit resistor DAC (RDAC) and the second stage comprising a 4-bit DAC-embedded operational amplifier (Op-Amp), improving area efficiency. Additionally, a current spillover gm-modulation technique is incorporated into the second stage DAC to further improve linearity without introducing additional static power consumption. The proposed DAC is fabricated in TSMC 180nm CMOS technology with a channel area of 13787 μm^2. The settling time of the proposed DAC is 3.6 μs. The maximum differential nonlinearity (DNL) and integral nonlinearity (INL) were measured as 1.81 and 1.72 LSB, respectively, with 1 LSB = 3.125 mV. The power consumption of the proposed DAC is 298 μW. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:17:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-05T16:17:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements iii
摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 2 Chapter 2 Background 3 2.1 Principle of Digital-to-Analog Converter 3 2.2 Performance Metrics 6 2.2.1 Static Characteristics 7 2.2.1.1 Resolution 7 2.2.1.2 Accuracy 7 2.2.1.3 Offset Error 8 2.2.1.4 Gain Error 8 2.2.1.5 Differential Nonlinearity 9 2.2.1.6 Integral Nonlinearity 9 2.2.1.7 Monotonicity 10 2.2.2 Dynamic Characteristics 11 2.2.2.1 Settling Time 12 2.2.2.2 Dynamic Range 12 2.3 Review of DAC Architectures 13 2.3.1 Conventional RDAC 16 2.3.2 Capacitor-based DAC 17 2.3.3 Two-Stage or Hybrid DAC 19 Chapter 3 The Proposed Digital-to-Analog Converter 21 3.1 Overview of the Proposed DAC Architecture 22 3.2 Fisrt-Stage DAC Design 25 3.2.1 Global Resistor-String 25 3.2.2 Digital Decoder Logic 29 3.2.3 Level Shifters 30 3.2.4 Two-Voltage Selector 33 3.3 Second-Stage DAC Design 34 3.3.1 4-bit Selector 34 3.3.2 4-bit Interpolation DAC-embedded Op-Amp with Current-Spillover Gm-Modulation 36 3.3.2.1 Rail-to-Rail Input Stage 39 3.3.2.2 Summing Circuit 41 3.3.2.3 Class-AB Output Stage 42 3.3.2.4 Overall DAC-embedded Op-Amp Design 44 3.3.2.5 Current-Spillover Gm-Modulation 47 Chapter 4 Experimental Results 51 4.1 Experimental Setup 51 4.2 Experimental Results 53 4.2.1 Discussion of Measurement Deviations 56 Chapter 5 Conclusion and Future Work 59 5.1 Conclusion 59 5.2 Future Work 60 References 61 | - |
| dc.language.iso | en | - |
| dc.subject | 數位類比轉換器 | zh_TW |
| dc.subject | 轉導調節 | zh_TW |
| dc.subject | 運算放大器 | zh_TW |
| dc.subject | Gm-Modulation | en |
| dc.subject | Digital-to-Analog Converter | en |
| dc.subject | Operational Amplifier | en |
| dc.title | 一 10 位元雙階段數位類比轉換器之具備電流分流轉導調變與 4 位元數位類比轉換嵌入式運算放大器 | zh_TW |
| dc.title | A 10-bit Two-Stage Digital-to-Analog Converter with 4-bit DAC-Embedded Operational Amplifier and Current-Spillover Gm-Modulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曹恆偉;張勝良 | zh_TW |
| dc.contributor.oralexamcommittee | Hen-Wai Tsao;Sheng-Lyang Jang | en |
| dc.subject.keyword | 數位類比轉換器,運算放大器,轉導調節, | zh_TW |
| dc.subject.keyword | Digital-to-Analog Converter,Operational Amplifier,Gm-Modulation, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202502568 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
