Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98408
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童慶斌zh_TW
dc.contributor.advisorChing-Pin Tungen
dc.contributor.author許宸瑋zh_TW
dc.contributor.authorChen-Wei Hsuen
dc.date.accessioned2025-08-05T16:15:18Z-
dc.date.available2025-08-06-
dc.date.copyright2025-08-05-
dc.date.issued2025-
dc.date.submitted2025-07-28-
dc.identifier.citationHess, J. C. (2024). Chip Production’s Ecological Footprint: Mapping Climate and Environmental Impact. Interface.
WEF. (2025). 2025 Global Risks Report https://reports.weforum.org/docs/WEF_Global_Risks_Report_2025.pdf
Mace, G. M., Barrett, M., Burgess, N. D., Cornell, S. E., Freeman, R., Grooten, M., & Purvis, A. (2018). Aiming higher to bend the curve of biodiversity loss. Nature Sustainability, 1(9), 448-451.
Deutz, A., Heal, G. M., Niu, R., Swanson,, E., T., T., Zhu, L., Delmar,, & A., M., A., Sethi, S. A., and Tobinde la Puente, J. (2020). FinancingNature: Closing the global biodiversity financing gap. The Paulson Institute,The Nature Conservancy, and the Cornell Atkinson Center for Sustainability. https://www.paulsoninstitute.org/conservation/financing-nature-report/
CBD. (2022). CBD Convention on Biological Diversity (2022)Kunming- Montreal GlobalBiodiversityFramework: Draft Decision Submitted by the President. https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf
Lepawsky, J. (2024). Climate change induced water stress and future semiconductor supply chain risk. Iscience, 27(2).
Bardon, M. G., Wuytens, P., Ragnarsson, L.-Å., Mirabelli, G., Jang, D., Willems, G., Mallik, A., Spessot, A., Ryckaert, J., & Parvais, B. (2020). DTCO including sustainability: Power-performance-area-cost-environmental score (PPACE) analysis for logic technologies. 2020 IEEE International Electron Devices Meeting (IEDM),
Ministry of Finances. (2024). Annual external trade report in 2023. https://service.mof.gov.tw/public/Data/statistic/bulletin/112/2023%E8%8B%B1%E6%96%87%E5%88%86%E6%9E%90.pdf
BCG & SIA. (2024). Emerging resilience in the semiconductor supply chain. https://www.semiconductors.org/wp-content/uploads/2024/05/Report_Emerging-Resilience-in-the-Semiconductor-Supply-Chain.pdf
Deng, L., & Williams, E. (2008). Measures and trends in energy use of semiconductor manufacturing. 2008 IEEE International Symposium on Electronics and the Environment,
Pirson, T., Delhaye, T. P., Pip, A. G., Le Brun, G., Raskin, J.-P., & Bol, D. (2022). The environmental footprint of IC production: review, analysis, and lessons from historical trends. IEEE Transactions on Semiconductor Manufacturing, 36(1), 56-67.
Boyd, S. B. (2011). Life-cycle assessment of semiconductors. Springer Science & Business Media.
Natural Capital Coalition. (2016). Natural Capital Protocol. https://capitalscoalition.org/wp-content/uploads/2021/01/NCC_Protocol.pdf
TNFD. (2023). Taskforce on Nature-related Financial Disclosures (TNFD) Recommendations. https://tnfd.global/wp-content/uploads/2023/08/Recommendations_of_the_Taskforce_on_Nature-related_Financial_Disclosures_September_2023.pdf?v=1695118661
Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'neill, R. V., & Paruelo, J. (1997). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260.
Barbier, E. B. (2019). The concept of natural capital. Oxford Review of Economic Policy, 35(1), 14-36.
TEEB. (2010). The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB. https://www.teebweb.org/wp-content/uploads/Study%20and%20Reports/Reports/Synthesis%20report/TEEB%20Synthesis%20Report%202010.pdf
IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. E. S. Brondizio, J. Settele, S. Díaz, and H. T. Ngo (editors). IPBES secretariat, Bonn, Germany. 1148 pages. https://doi.org/https://doi.org/10.5281/zenodo.3831673
United Nations. (1992). Convention on biological diversity (Treaty Collection, Issue.
IEEP. (2021). Biodiversity footprints in policy- and decision-making. https://ieep.eu/wp-content/uploads/2022/12/Biodiversity-Footprint_Report_IEEP.pdf
PBAF. (2024). Biodiversity Footprinting Standard: Financed Impact. https://www.pbafglobal.com/files/downloads/PBAF_biodiversity_footprinting_standard_financed_impact2024.pdf
Janse, J., Kuiper, J., Weijters, M., Westerbeek, E., Jeuken, M., Bakkenes, M., Alkemade, R., Mooij, W., & Verhoeven, J. (2015). GLOBIO-Aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems. Environmental Science & Policy, 48, 99-114.
Schipper, A. M., Hilbers, J. P., Meijer, J. R., Antão, L. H., Benítez‐López, A., de Jonge, M. M., Leemans, L. H., Scheper, E., Alkemade, R., & Doelman, J. C. (2020). Projecting terrestrial biodiversity intactness with GLOBIO 4. Global change biology, 26(2), 760-771.
Baitz, M., Kreissig, J., & Wolf, M.-A. (2000). Methode zur Integration der Naturraum-Inanspruchnahme in Ökobilanzen. Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch, 1(119), 128-149.
Huijbregts, M. A., Steinmann, Z. J., Elshout, P. M., Stam, G., Verones, F., Vieira, M. D., Hollander, A., Zijp, M., & van Zelm, R. (2016). ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint level report I: characterization.
Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & Van Zelm, R. (2009). ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1, 1-126.
Bull, J. W., Taylor, I., Biggs, E., Grub, H. M., Yearley, T., Waters, H., & Milner-Gulland, E. (2022). Analysis: the biodiversity footprint of the University of Oxford. Nature, 604(7906), 420-424.
Brachet, A., Schiopu, N., & Clergeau, P. (2019). Biodiversity impact assessment of building's roofs based on Life Cycle Assessment methods. Building and Environment, 158, 133-144.
AXA. (2024). Roadmap to a Climate Transition Plan: 2024 AXA Group Climate and Biodiversity Report. . https://www.axa.com/en/press/publications/2024-climate-report
Valero, A., Valero, A., Calvo, G., & Ortego, A. (2018). Material bottlenecks in the future development of green technologies. Renewable and Sustainable Energy Reviews, 93, 178-200.
Kumar, A., Thorbole, A., & Gupta, R. K. (2025). Sustaining the future: semiconductor materials and their recovery. Materials Science in Semiconductor Processing, 185, 108943.
Nature Positive Initiative. (2023). The Definition of Nature Positive. https://www.naturepositive.org/what-is-nature-positive/
SBTN. (2024). Corporate manual: Science-based targets for nature. https://sciencebasedtargetsnetwork.org/companies/take-action/corporate-manual/
Wunder, S., Fraccaroli, C., Bull, J. W., Dutta, T., Eyres, A., Evans, M. C., Thorsen, B. J., Jones, J. P., Maron, M., & Muys, B. (2024). Biodiversity credits: learning lessons from other approaches to incentivize conservation. In: OSF.
BCA. (2024). Definition of a Biodiversity Credit. Biodiversity Credit Alliance (BCA).
Steele, P., & Porras, I. (2020). Making the market work for nature: how biocredits can protect biodiversity and reduce poverty.
Ducros, A. and Steele, P. (2022). Biocredits to finance nature and people: emerging lessons. IIED, London. https://www.iied.org/21216iied
Pollination & Taskforce on Nature Markets. (2023). Biodiversity Credit Markets: The role of law, regulation and policy. https://cdn.prod.website-files.com/623a362e6b1a3e2eb749839c/6452340b9bcbb3ef3f82e6b6_BiodiversityCreditMarkets.pdf
Bull, J. W., Milner-Gulland, E. J., Suttle, K. B., & Singh, N. J. (2014). Comparing biodiversity offset calculation methods with a case study in Uzbekistan. Biological Conservation, 178, 2-10.
Wauchope, H. S., Zu Ermgassen, S. O., Jones, J. P., Carter, H., Schulte to Bühne, H., & Milner-Gulland, E. (2024). What is a unit of nature? Measurement challenges in the emerging biodiversity credit market. Proceedings B, 291(2036), 20242353.
Karolyi, G. A., & Tobin‐de la Puente, J. (2023). Biodiversity finance: A call for research into financing nature. Financial Management, 52(2), 231-251.
Roussilhe, G., Pirson, T., Xhonneux, M., & Bol, D. (2024). From silicon shield to carbon lock‐in? The environmental footprint of electronic components manufacturing in Taiwan (2015–2020). Journal of Industrial Ecology, 28(5), 1212-1226.
Prakash, S., Liu, R., Schischke, K., Stobbe, L., & Gensch, C.-O. (2013). Schaffung einer datenbasis zur ermittlung ökologischer wirkungen der produkte der informations-und kommunikationstechnik (IKT).
Proske, M., Clemm, C., & Richter, N. (2016). Life cycle assessment of the Fairphone 2. Fraunhofer IZM.
Taipei Exchange. Introduction to the semiconductor industry chain. Industrial Value Chain Information Platform. https://ic.tpex.org.tw/introduce.php?ic=D000
MOE. Water Pollution Control Act Disclosure Platform https://waterpollutioncontrol.moenv.gov.tw/view/Default_Eng.aspx
Climate Change Administration. Climate Change Administration Ministry of Environment Mandatory Greenhouse Gas Reporting System. https://ghgregistry.moenv.gov.tw/epa_ghg/Default_en.aspx
MOE. Ministry of Environment Environmental Information Open Platform. https://data.moenv.gov.tw/en
TSIA. (2024). Overview on Taiwan Semiconductor Industry (2024 Edition). file:///Users/wei/Downloads/2024%20Overview%20Final.pdf
Taiwan Semiconductor Manufacturing Company. (2024). 2024 Sustainability Report. https://esg.tsmc.com/zh-Hant/resources/ESG-data-hub?tab=reportbuilder
Vanguard International Semiconductor Corporation. (2024). 2024 Sustainability Report. https://media-vis.todayir.com/20240826174646320533860_tc.pdf
Micron Technology. (2024). 2024 Sustainability Report. https://tw.micron.com/content/dam/micron/global/public/documents/about/sustainability/2024-micron-sustainability-report.pdf
Powerchip Semiconductor Manufacturing Corporation. (2024). 2024 Sustainability Report. https://esg.powerchip.com/upload/media/sustainability_report_tw/psmc-ESG-report-2023.pdf
GlobalWafers. (2024). 2024 Sustainability Report. https://www.sas-globalwafers.com/wp-content/uploads/2023/06/GlobalWafers_2023-Sustainability-Report-_CN.pdf
United Microelectronics Corporation. (2024). 2024 Sustainability Report. https://www.umc.com/upload/media/07_Sustainability/72_Reports_and_Results/1_Corporate_Sustainability_Reports/CSR_Reports/CS_Reort_chinese_pdf/2023_CSR_report_chi/UMC-2023-CH-0730-1-elink.pdf
Nanya Technology Corporation. (2024). 2024 Sustainability Report. https://www.nanya.com/ESG/storage/file/e3e8387b-3a38-4f10-b520-779f221bf0e9?v=1741247784
Winbond Electronics Corporation. (2024). 2024 Sustainablilty Report. https://esg.winbond.com/uploads/files/shares/ESG%20report/2023/2023_WINBOND_ESG_REPORT_CH.pdf
Episil Technologies. (2024). 2024 Sustainability Report. https://www.episil.com/upload/esg/report/2023.pdf
Win Semiconductors Corp. (2024). 2024 Sustainablilty Report. https://www.winfoundry.com/wincsr/tw/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98408-
dc.description.abstract臺灣作為全球半導體製造重鎮,供應全球超過70%的10奈米以下的積體電路(IC),其製造過程的高耗能與高耗水的特性高度依賴生態系統服務,也對生態環境造成顯著衝擊(Hess, 2024),在全球邁向自然正成長與永續供應鏈轉型的趨勢下,臺灣半導體產業不僅須正視其對自然資本的依賴與衝擊,更應擔負起領頭轉型的責任,建立兼顧產業競爭力與生物多樣性復育的正向發展。然而,全球缺乏針對半導體製造業的生物多樣性影響量化研究,更缺乏從自然損害轉向自然正成長的策略規劃。本研究聚焦臺灣半導體製造業,建構生物多樣性足跡評估框架,並提出具體實用的自然正成長策略。
研究方法採用「界定、衡量與管理」三步驟,篩選10家代表性臺灣半導體製造公司(涵蓋臺灣半導體製造業總收入98%)。透過ReCiPe2016生命週期評估模型量化生物多樣性影響,並使用地理資訊系統(GIS)整合國土生態綠網關注區域、生物多樣性熱區、紅皮書受脅植物重要棲地、及自來水水質水量保護區等圖資,進行製造廠區的風險辨識與管理。此外,本研究以科學基礎目標網絡SBTN提出的AR3T架構為基礎,並創新性導入生物多樣性信用額度的概念,提出半導體製造業的自然正成長策略。
研究發現2023年臺灣半導體製造業生物多樣性足跡總量達3557.23 PDF·km²·yr,其意義為相當於大臺北生活圈面積上所有物種完全消失一年。台積電貢獻64.4%的總影響,但其影響強度(0.0032 PDF·km²·yr/百萬元)屬於中間值,打破產能提升必然增加環境負擔的觀念,並驗證技術效率提升可以有效改善生態影響。主要影響因子為能源使用產生的溫室氣體排放(2969.71 PDF·km²·yr),其次為水資源消耗(146.28 PDF·km²·yr)。此外,2020至2023年間產業總體影響增加18.2%,反映隨著產業經濟規模擴張,對生物多樣性的壓力亦同步上升。根據空間風險分析,本研究提出三層次滾動式管理順序,協助企業辨識與控管自然相關風險,並提出了實現2030年生物多樣性影響較2020年減少10%、2050年的達到自然正成長的臺灣半導體製造業自然正成長策略與行動框架。
本研究填補臺灣半導體製造業在生物多樣性影響量化與管理策略上的研究缺口,首度結合生物多樣性足跡、空間風險分析與SBTN的AR3T架構,提出具體實用的自然正成長路徑。研究結果不僅強化企業辨識與減緩生物多樣性風險的能力,亦有助於企業設立科學基礎的指標與目標,回應TNFD、SBTN及ACT-D等國際自然相關揭露的主流框架。展望未來,本研究所提出之評估方法與策略制定具跨產業應用潛力,可以作為企業邁向自然正成長與環境永續發展的重要參考依據。
zh_TW
dc.description.abstractAs a global leader in semiconductor manufacturing, Taiwan plays a pivotal role in the high-tech supply chain while imposing substantial ecological burdens through energy- and water-intensive production processes(Hess, 2024). However, there remains a critical gap in sector-specific biodiversity impact quantification and actionable pathways toward Nature Positive.
This study develops an integrated framework to assess and manage biodiversity impacts across Taiwan's semiconductor manufacturing sector, covering companies that represent 98% of industry revenue. Combining the ReCiPe 2016 life cycle assessment model with geospatial risk mapping—incorporating national green network priority areas, biodiversity hotspots, critical habitats of threatened plant species, and protected water protection area—this research quantifies site-specific biodiversity footprints and spatial vulnerability. Building on the Science-Based Targets for Nature (SBTN) AR3T framework (Avoid, Reduce, Restore, Regenerate, Transform), the study further introduces a biodiversity credit to inform transition strategies.
The results indicate that the total biodiversity footprint of the sector reached 3557.23 PDF·km²·yr in 2023, primarily driven by indirect greenhouse gas emissions from energy consumption and secondarily by water use. Notably, while Taiwan Semiconductor Manufacturing Company (TSMC) contributed 64.4% of the total impact, its impact intensity remained moderate (0.0032 PDF·km²·yr/ million NTD), demonstrating that production scale does not necessarily exacerbate ecological damage if efficiency gains are achieved. From 2020 to 2023, the total sectoral impact increased by 18.2%, reinforcing the urgency for mitigation.
This research proposes a tiered spatial prioritization framework to guide biodiversity risk management and establishes quantifiable targets for reducing sectoral biodiversity impact by 10% by 2030 (relative to 2020 levels) and achieving Nature Positive by 2050. This study provides a replicable model for integrating biodiversity metrics into industrial sustainability strategies and contributes to operationalizing global nature-related disclosure frameworks such as TNFD, SBTN, and ACT-D at the sectoral level.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:15:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-05T16:15:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
ABSTRACT IV
目次 VI
圖次 IX
表次 XI
第一章、緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究架構與流程 3
第二章、文獻回顧 4
2.1 自然資本與生物多樣性的概念 4
2.1.1 自然資本的定義 4
2.1.2 人類活動對自然資本的依賴與影響 5
2.1.3 生物多樣性的定義 7
2.1.4 生物多樣性與自然資本及生態系統服務的交互關係 8
2.2 生物多樣性足跡評估 9
2.2.1生物多樣性足跡的定義 9
2.2.2生物多樣性足跡衡量單位介紹 9
2.2.3生物多樣性足跡評估方法學介紹 11
2.2.4生物多樣性足跡評估模型 12
2.2.5生物多樣性足跡評估案例 13
2.3 半導體產業與自然資本的關係 18
2.4 自然正成長策略與生物多樣性額度 19
2.4.1 自然正成長的定義與目標框架 19
2.4.2生物多樣性額度的定義與相關概念 20
2.4.3生物多樣性額度案例分析 23
2.4.3生物多樣性額度與自然正成長的連結 25
2.5文獻分析總結 26
第三章、研究步驟與方法 27
3.1 研究步驟 27
3.2 界定:半導體製造業的範疇界定與篩選 28
3.3 衡量:半導體製造業生物多樣性足跡評估 29
3.3.1 生物多樣性足跡評估框架 29
3.3.2環境輸入與輸出的類別與數據蒐集 30
3.3.3中間點評估-環境衝擊 32
3.3.4終點評估-生物多樣性足跡 33
3.4 衡量:半導體製造業與自然相關之風險辨識 33
3.4.1工具選擇與圖資介紹 33
3.4.2疊圖分析與風險評估與管理 35
3.5 管理:半導體製造業自然正成長策略 35
3.5.1半導體製造業自然正成長策略指標 35
3.5.2半導體製造業自然正成長策略目標 36
3.6 管理:規劃自然正成長行動框架 37
第四章、結果與討論 38
4.1 研究步驟的獨特性與國際框架的通用性 38
4.2研究樣本篩選結果 39
4.3生物多樣性足跡衡量結果 42
4.3.1半導體製造公司的生物多樣性影響 42
4.3.2環境影響因子、資源投入與環境排放對生物多樣性影響的貢獻 44
4.3.3 2020年與2023年半導體製造公司生物多樣性影響比較 45
4.4自然相關風險辨識結果 48
4.4.1製造廠區生物多樣性影響區域分布 48
4.4.2製造廠區生物多樣性影響與生態重點關注區域評估 50
4.4.3製造廠區生物多樣性影響與自來水水質水量保護區評估 52
4.4.4半導體製造業的自然風險管理 54
4.5 自然正成長策略與行動框架 55
4.5.1自然正成長策略指標與目標 55
4.5.2自然正成長路徑與行動框架 57
第五章、結論與建議 60
5.1 結論 60
5.2 建議 63
第六章、參考文獻 66
-
dc.language.isozh_TW-
dc.subject自然風險管理zh_TW
dc.subject自然正成長zh_TW
dc.subject生物多樣性足跡zh_TW
dc.subject半導體製造業zh_TW
dc.subject自然相關財務揭露zh_TW
dc.subjectBiodiversity Footprinten
dc.subjectSemiconductor Manufacturing Industryen
dc.subjectNatural Risk Managementen
dc.subjectNature Positiveen
dc.subjectTNFDen
dc.title臺灣半導體製造業的生物多樣性足跡評估與自然正成長策略zh_TW
dc.titleBiodiversity Footprint Assessment and Nature Positive Strategy for Taiwan's Semiconductor Manufacturing Industryen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭財吉;許少瑜zh_TW
dc.contributor.oralexamcommitteeTsai-Chi Kuo;Shao-Yiu Hsuen
dc.subject.keyword自然相關財務揭露,生物多樣性足跡,半導體製造業,自然風險管理,自然正成長,zh_TW
dc.subject.keywordTNFD,Biodiversity Footprint,Semiconductor Manufacturing Industry,Natural Risk Management,Nature Positive,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202501449-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-30-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-lift2028-07-26-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2028-07-26
6.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved