請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98406完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周佳靚 | zh_TW |
| dc.contributor.advisor | Chia-Ching Chou | en |
| dc.contributor.author | 吳佳鴻 | zh_TW |
| dc.contributor.author | Chia-Hung Wu | en |
| dc.date.accessioned | 2025-08-05T16:14:48Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2025-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-06-11 | - |
| dc.identifier.citation | [1] M.L. Oyen, Mechanical characterisation of hydrogel materials, International Materials Reviews 59(1) (2014) 44-59.
[2] E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, Journal of advanced research 6(2) (2015) 105-121. [3] X. Liu, J. Liu, S. Lin, X. Zhao, Hydrogel machines, Materials Today 36 (2020) 102-124. [4] L. Griffith, Polymeric biomaterials, Acta materialia 48(1) (2000) 263-277. [5] A.S. Hoffman, Hydrogels for biomedical applications, Advanced drug delivery reviews 64 (2012) 18-23. [6] J. Zhu, Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering, Biomaterials 31(17) (2010) 4639-4656. [7] N.A. Peppas, K.B. Keys, M. Torres-Lugo, A.M. Lowman, Poly (ethylene glycol)-containing hydrogels in drug delivery, Journal of controlled release 62(1-2) (1999) 81-87. [8] K.Y. Lee, J.A. Rowley, P. Eiselt, E.M. Moy, K.H. Bouhadir, D.J. Mooney, Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density, Macromolecules 33(11) (2000) 4291-4294. [9] U. Fumio, Y. Hiroshi, N. Kumiko, N. Sachihiko, S. Kenji, M. Yasunori, Swelling and mechanical properties of poly (vinyl alcohol) hydrogels, International journal of pharmaceutics 58(2) (1990) 135-142. [10] S.R. Stauffer, N.A. Peppast, Poly (vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing, Polymer 33(18) (1992) 3932-3936. [11] M.C. Catoira, L. Fusaro, D. Di Francesco, M. Ramella, F. Boccafoschi, Overview of natural hydrogels for regenerative medicine applications, Journal of Materials Science: Materials in Medicine 30 (2019) 1-10. [12] D.-M. Radulescu, I.A. Neacsu, A.-M. Grumezescu, E. Andronescu, New insights of scaffolds based on hydrogels in tissue engineering, Polymers 14(4) (2022) 799. [13] J. Liao, H. Huang, Review on magnetic natural polymer constructed hydrogels as vehicles for drug delivery, Biomacromolecules 21(7) (2020) 2574-2594. [14] A. Fatimi, O.V. Okoro, D. Podstawczyk, J. Siminska-Stanny, A. Shavandi, Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review, Gels 8(3) (2022) 179. [15] Z. Bao, C. Xian, Q. Yuan, G. Liu, J. Wu, Natural polymer‐based hydrogels with enhanced mechanical performances: preparation, structure, and property, Advanced Healthcare Materials 8(17) (2019) 1900670. [16] L. Li, F. Yu, L. Zheng, R. Wang, W. Yan, Z. Wang, J. Xu, J. Wu, D. Shi, L. Zhu, Natural hydrogels for cartilage regeneration: Modification, preparation and application, Journal of orthopaedic translation 17 (2019) 26-41. [17] K.-F. Yu, T.-Y. Lu, Y.-C.E. Li, K.-C. Teng, Y.-C. Chen, Y. Wei, T.-E. Lin, N.-C. Cheng, J. Yu, Design and synthesis of stem cell-laden keratin/glycol chitosan methacrylate bioinks for 3D bioprinting, Biomacromolecules 23(7) (2022) 2814-2826. [18] J.H. Ryu, H.Y. Yoon, I.C. Sun, I.C. Kwon, K. Kim, Tumor‐targeting glycol chitosan nanoparticles for cancer heterogeneity, Advanced Materials 32(51) (2020) 2002197. [19] L. Yan, S.H. Crayton, J.P. Thawani, A. Amirshaghaghi, A. Tsourkas, Z. Cheng, A pH-responsive drug-delivery platform based on glycol chitosan–coated liposomes, Small (Weinheim an der Bergstrasse, Germany) 11(37) (2015) 4870. [20] M. Sahiner, A.S. Yilmaz, R.S. Ayyala, N. Sahiner, Biocompatible glycol chitosan microgels as effective drug carriers, Gels 9(5) (2023) 398. [21] E. Park, J. Lee, K.M. Huh, S.H. Lee, H. Lee, Toxicity‐attenuated glycol Chitosan adhesive inspired by mussel adhesion mechanisms, Advanced healthcare materials 8(14) (2019) 1900275. [22] Y. Yu, D.H. Kim, E.Y. Suh, S.-H. Jeong, H.C. Kwon, T.P. Le, Y. Kim, S.-A. Shin, Y.-H. Park, K.M. Huh, Injectable glycol chitosan thermogel formulation for efficient inner ear drug delivery, Carbohydrate Polymers 278 (2022) 118969. [23] M. Huo, Y. Zhang, J. Zhou, A. Zou, D. Yu, Y. Wu, J. Li, H. Li, Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug, International journal of pharmaceutics 394(1-2) (2010) 162-173. [24] C. Shen, L. Zhao, X. Du, J. Tian, Y. Yuan, M. Jia, Y. He, R. Zeng, R. Qiao, C. Li, Smart responsive quercetin-conjugated glycol chitosan prodrug micelles for treatment of inflammatory bowel diseases, Molecular Pharmaceutics 18(3) (2021) 1419-1430. [25] Z. Li, H. Shim, M.O. Cho, I.S. Cho, J.H. Lee, S.-W. Kang, B. Kwon, K.M. Huh, Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease, Carbohydrate polymers 184 (2018) 342-353. [26] E.J. Lee, E. Kang, S.-W. Kang, K.M. Huh, Thermo-irreversible glycol chitosan/hyaluronic acid blend hydrogel for injectable tissue engineering, Carbohydrate polymers 244 (2020) 116432. [27] Y. Yu, C. Wang, Q. Fu, Y. Wan, A. Yu, Multi-crosslinked hydrogel built with hyaluronic acid-tyramine, thiolated glycol chitosan and copper-doped bioglass nanoparticles for expediting wound healing, Carbohydrate Polymers 327 (2024) 121635. [28] I.S. Cho, M.O. Cho, Z. Li, M. Nurunnabi, S.Y. Park, S.-W. Kang, K.M. Huh, Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications, Carbohydrate polymers 144 (2016) 59-67. [29] M.M. Fares, E.S. Sani, R.P. Lara, R.B. Oliveira, A. Khademhosseini, N. Annabi, Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering, Biomaterials science 6(11) (2018) 2938-2950. [30] H.K. Chang, D.H. Yang, M.Y. Ha, H.J. Kim, C.H. Kim, S.H. Kim, J.W. Choi, H.J. Chun, 3D printing of cell-laden visible light curable glycol chitosan bioink for bone tissue engineering, Carbohydrate Polymers 287 (2022) 119328. [31] F. Ghasemi, A. Jahani, A. Moradi, M.H. Ebrahimzadeh, N. Jirofti, Different Modification Methods of Poly Methyl Methacrylate (PMMA) Bone Cement for Orthopedic Surgery Applications, Archives of Bone and Joint Surgery 11(8) (2023) 485. [32] J.-H. Wang, C.-W. Tsai, N.-Y. Tsai, C.-Y. Chiang, R.-S. Lin, R.F. Pereira, Y.-C.E. Li, An injectable, dual crosslinkable hybrid pectin methacrylate (PECMA)/gelatin methacryloyl (GelMA) hydrogel for skin hemostasis applications, International Journal of Biological Macromolecules 185 (2021) 441-450. [33] M. Diolosà, I. Donati, G. Turco, M. Cadenaro, R. Di Lenarda, L. Breschi, S. Paoletti, Use of methacrylate-modified chitosan to increase the durability of dentine bonding systems, Biomacromolecules 15(12) (2014) 4606-4613. [34] L.E. Agibayeva, D.B. Kaldybekov, N.N. Porfiryeva, V.R. Garipova, R.A. Mangazbayeva, R.I. Moustafine, I.I. Semina, G.A. Mun, S.E. Kudaibergenov, V.V. Khutoryanskiy, Gellan gum and its methacrylated derivatives as in situ gelling mucoadhesive formulations of pilocarpine: In vitro and in vivo studies, International Journal of Pharmaceutics 577 (2020) 119093. [35] L. Zhang, Understanding the Radiation Resistance Mechanisms of Nanocrystalline Metals from Atomistic Simulation, Metals 11(11) (2021) 1875. [36] T. Róg, M. Girych, A. Bunker, Mechanistic understanding from molecular dynamics in pharmaceutical research 2: lipid membrane in drug design, Pharmaceuticals 14(10) (2021) 1062. [37] J. Xu, X. Chen, G. Yang, X. Niu, F. Chang, G. Lacidogna, Review of research on micromechanical properties of cement-based materials based on molecular dynamics simulation, Construction and Building Materials 312 (2021) 125389. [38] L. Li, Z. Liu, R. Qi, Molecular dynamics simulations in hydrogel research and its applications in energy utilization: A review, Energy Reviews (2024) 100072. [39] J. Kim, C.H. Kim, C. Burger, M. Park, M.F. Kling, D.E. Kim, T. Joo, Non-Born–Oppenheimer molecular dynamics observed by coherent nuclear wave packets, The Journal of Physical Chemistry Letters 11(3) (2020) 755-761. [40] H. Nasution, H. Harahap, N.F. Dalimunthe, M.H.S. Ginting, M. Jaafar, O.O. Tan, H.K. Aruan, A.L. Herfananda, Hydrogel and effects of crosslinking agent on cellulose-based hydrogels: A review, Gels 8(9) (2022) 568. [41] X. Ou, Q. Han, H.-H. Dai, J. Wang, Molecular dynamic simulations of the water absorbency of hydrogels, Journal of molecular modeling 21 (2015) 1-10. [42] C.R. Ratwani, S. Zhao, Y. Huang, M. Hadfield, A.R. Kamali, A.M. Abdelkader, Surface Modification of Transition Metal Dichalcogenide Nanosheets for Intrinsically Self‐Healing Hydrogels with Enhanced Mechanical Properties, Small 19(22) (2023) 2207081. [43] S.-C. Hsu, S.-h. Hsu, S.-W. Chang, Effect of pH on molecular structures and network of glycol chitosan, ACS Biomaterials Science & Engineering 6(1) (2019) 298-307. [44] J.R. Perilla, B.C. Goh, C.K. Cassidy, B. Liu, R.C. Bernardi, T. Rudack, H. Yu, Z. Wu, K. Schulten, Molecular dynamics simulations of large macromolecular complexes, Current opinion in structural biology 31 (2015) 64-74. [45] J. Huang, A.D. MacKerell Jr, CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data, Journal of computational chemistry 34(25) (2013) 2135-2145. [46] M.A. González, Force fields and molecular dynamics simulations, École thématique de la Société Française de la Neutronique 12 (2011) 169-200. [47] B.R. Brooks, C.L. Brooks III, A.D. Mackerell Jr, L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, CHARMM: the biomolecular simulation program, Journal of computational chemistry 30(10) (2009) 1545-1614. [48] R.B. Best, X. Zhu, J. Shim, P.E. Lopes, J. Mittal, M. Feig, A.D. MacKerell Jr, Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles, Journal of chemical theory and computation 8(9) (2012) 3257-3273. [49] M. Meunier, S. Robertson, Materials studio 20th anniversary, Taylor & Francis, 2021, pp. 537-539. [50] S. Jo, T. Kim, V.G. Iyer, W. Im, CHARMM‐GUI: a web‐based graphical user interface for CHARMM, Journal of computational chemistry 29(11) (2008) 1859-1865. [51] S. Kim, J. Lee, S. Jo, C.L. Brooks III, H.S. Lee, W. Im, CHARMM‐GUI ligand reader and modeler for CHARMM force field generation of small molecules, Wiley Online Library, 2017. [52] K. Vanommeslaeghe, A.D. MacKerell Jr, Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing, Journal of chemical information and modeling 52(12) (2012) 3144-3154. [53] K. Vanommeslaeghe, E.P. Raman, A.D. MacKerell Jr, Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges, Journal of chemical information and modeling 52(12) (2012) 3155-3168. [54] Y.K. Choi, S.-J. Park, S. Park, S. Kim, N.R. Kern, J. Lee, W. Im, CHARMM-GUI polymer builder for modeling and simulation of synthetic polymers, Journal of chemical theory and computation 17(4) (2021) 2431-2443. [55] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, Journal of molecular graphics 14(1) (1996) 33-38. [56] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. In't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Computer Physics Communications 271 (2022) 108171. [57] C.H. Borca, C.A. Arango, Molecular dynamics of a water-absorbent nanoscale material based on chitosan, The journal of physical chemistry B 120(15) (2016) 3754-3764. [58] D. Aztatzi-Pluma, E.O. Castrejón-González, A. Almendarez-Camarillo, J.F. Alvarado, Y. Duran-Morales, Study of the molecular interactions between functionalized carbon nanotubes and chitosan, The Journal of Physical Chemistry C 120(4) (2016) 2371-2378. [59] L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: A package for building initial configurations for molecular dynamics simulations, Journal of computational chemistry 30(13) (2009) 2157-2164. [60] L.J. Abbott, K.E. Hart, C.M. Colina, Polymatic: a generalized simulated polymerization algorithm for amorphous polymers, Theoretical Chemistry Accounts 132 (2013) 1-19. [61] S.J. Rukmani, P. Lin, J.S. Andrew, C.M. Colina, Molecular modeling of complex cross-linked networks of PEGDA nanogels, The Journal of Physical Chemistry B 123(18) (2019) 4129-4138. [62] Y. Zhao, Y. Li, S. Mao, W. Sun, R. Yao, The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology, Biofabrication 7(4) (2015) 045002. [63] T. Osswald, N. Rudolph, Polymer rheology, Carl Hanser, München (2015). [64] A. Kakati, G. Kumar, J.S. Sangwai, Low salinity polymer flooding: effect on polymer rheology, injectivity, retention, and oil recovery efficiency, Energy & Fuels 34(5) (2020) 5715-5732. [65] V.G. Kulichikhin, A.Y. Malkin, The role of structure in polymer rheology, Polymers 14(6) (2022) 1262. [66] T. Uneyama, Y. Masubuchi, K. Horio, Y. Matsumiya, H. Watanabe, J.A. Pathak, C.M. Roland, A theoretical analysis of rheodielectric response of type‐A polymer chains, Journal of Polymer Science Part B: Polymer Physics 47(11) (2009) 1039-1057. [67] D. Becerra, A. Córdoba, M. Katzarova, M. Andreev, D.C. Venerus, J.D. Schieber, Polymer rheology predictions from first principles using the slip-link model, Journal of Rheology 64(5) (2020) 1035-1043. [68] J.D. Ferry, Viscoelastic properties of polymers, John Wiley & Sons1980. [69] S. Ebrahimi, M. Meunier, A. Soldera, Molecular dynamics simulation of the dynamical mechanical analysis of polybutadiene, Polymer Testing 111 (2022) 107585. [70] T.-Y. Gong, S.-h. Hsu, S.-W. Chang, C.-C. Chou, Effects of the Degree of Phenol Substitution on Molecular Structures and Properties of Chitosan-Phenol-Based Self-Healing Hydrogels, ACS Biomaterials Science & Engineering 9(11) (2023) 6146-6155. [71] Y. Tamai, H. Tanaka, K. Nakanishi, Molecular dynamics study of polymer− water interaction in hydrogels. 1. Hydrogen-bond structure, Macromolecules 29(21) (1996) 6750-6760. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98406 | - |
| dc.description.abstract | 在生物醫學領域中,有許多研究開發自然界中存在的物體做為生物材料,使用在三維列印技術上,應用在組織工程。為了達到更良好的機械性質以及符合特定目標,過去常見的一種方法是進行甲基丙烯酸酯基團(Methacrylate,簡稱 MA) 的化學改質,形成化學交聯的材料,讓原始溶液可以轉化為透明且有彈性的水凝膠。這種水凝膠可以用作生物墨水,以構建複雜且功能性的組織結構,幫助修復受損之器官及部位。乙二醇殼聚醣 (Glycol Chitosan,簡稱 GC)來自甲殼素的生物,本身具有良好的生物相容性及無毒性,也是一種適合細胞生長的基礎材料。乙二醇殼聚醣進一步與甲基丙烯酸酯基團(Glycol Chitosan Methacrylate,簡稱 GCMA)進行化學修飾、化學交聯,可以調節其機械性質和生物相關特性。在此研究中,我們選用分子動力學(Molecular Dynamics,簡稱 MD)模擬,觀察微觀尺度下的 GC 和 GCMA 的分子鏈結構及分子間交互作用。另外,我們也探討系統濃度的變化以及甲基丙烯酸酯取代度高低所帶來的影響。透過比較模型中氫鍵的數量和結構的量測,我們的結果顯示,GCMA 比 GC 更容易聚集並具有更強的分子間相互作用,這個現象隨著甲基丙烯酸酯修飾數量的增加而更加明顯。接下來發現甲基丙烯酸酯基團的接枝,改變原始材料的分子構型,進而導致了疏水的特性。最後是隨著濃度升高,分子鏈之間的相互作用增加,更容易形成交聯網絡。我們的研究使用全原子的模擬,提供微觀尺度下的觀察結果,讓我們更瞭解乙二醇殼聚醣以及甲基丙烯 酸酯乙二醇殼聚醣的基礎性質,給予未來的水凝膠策略性設計的參考依據,達到特定需求。 | zh_TW |
| dc.description.abstract | In the field of biomedical research, numerous studies have been conducted on three-dimensional bioprinting technology for manufacturing biological tissues and organs. With chemical modification and chemical crosslinking, the solution transforms into a transparent and flexible hydrogel. The hydrogel can be used as bio-ink to construct complicate and functional tissue structures. Glycol chitosan (GC) exhibits excellent biocompatibility, non-toxic properties, and serves as a fundamental material adaptable for cell loading. Glycol chitosan can be further chemically modified with methacrylate (GCMA) ,and these methacrylate chemical connections can tune its mechanical properties and biological-related characteristics. In our study, we employ molecular dynamic (MD) simulation methods to analyze the material structure of GC and GCMA and their molecular interaction at the microscopic scale. Additionally, we investigate the effect of the varying degrees of methacrylate substitution on GCMA and the influence of the concentrations. We compared the number of hydrogen bonds and structural changes within these models. Our results indicate that GCMA tends to aggregate and has the stronger intermolecular interaction than GC, a phenomenon that becomes more evident as the methacrylate-modification enhances. Also, the presence of methacrylate groups changes the molecular configuration and results in hydrophobic materials. As the concentration increases, the chains gathering and make an increase of interaction between molecular chains. Our study provides an in-depth atomic-level analysis to investigate the fundamental properties of glycol chitosan (GC) and methacrylate-modified glycol chitosan (GCMA) to boost the strategic design of material. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:14:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-05T16:14:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Hydrogel 1 1.2 Literature Review 4 1.2.1 Glycol Chitosan 4 1.2.2 Methacrylate-Modified Hydrogel 6 1.2.3 Molecular Dynamics Studies Associated with Hydrogel 8 1.3 Motivation and Aims 10 1.4 The Frame of This Thesis 11 Chapter 2 Methodology 12 2.1 Molecular Dynamics Simulation 12 2.1.1 Equation of Verlet Integration 13 2.1.2 CHARMM Force Field 14 2.1.3 CHARMM Force Field Modification 15 2.1.4 Ensemble 17 2.1.5 Periodic Boundary Conditions and Cutoff 18 2.1.6 Energy Minimization 20 2.1.7 Procedure for Molecular Dynamics Simulation 21 2.2 Model Design and System Parameter 23 2.2.1 Initial Model of Molecular Chains 23 2.2.2 System Setting 25 2.3 Crosslinking Method 28 2.4 Rheology Method 30 2.5 Analytical Method 33 2.5.1 Root Mean Square Deviation 33 2.5.2 End-to-end Distance 34 2.5.3 Radius of Gyration 35 2.5.4 Hydrogen Bond 36 Chapter 3 Structure Analysis of GC and GCMA 37 3.1 Equilibrium of GC and GCMA 37 3.2 The Results of End-to-end Distance 41 3.3 The Results of Radius of Gyration 45 Chapter 4 Hydrogen Bonds Interaction Analysis of GC and GCMA 48 4.1 Hydrogen Bonds in Various Degree of MA-substitution 48 4.1.1 Intramolecular and Intermolecular Hydrogen Bonds 48 4.1.2 Hydrogen Bonds with Water Molecules 50 4.2 Hydrogen Bonds in Various Concentrations 51 4.2.1 Intramolecular and Intermolecular Hydrogen Bonds 51 4.2.2 Hydrogen Bonds with Water Molecules 53 4.3 Hydrogen Bonds Position 54 4.3.1 Intramolecular and Intermolecular Hydrogen Bonds 54 4.3.2 Hydrogen Bonds with Water Molecules 57 Chapter 5 Rheology of GC and GCMA 63 5.1 The Results of Storage Modulus and Loss Modulus 63 5.2 Structure and Interaction in Shearing State 65 Chapter 6 Summary 72 6.1 Conclusions 72 6.2 Future Work 74 REFERENCE 75 Appendix A. Detail of Crosslinking 81 Appendix B. Snapshot 84 | - |
| dc.language.iso | en | - |
| dc.subject | 乙二醇殼聚醣 | zh_TW |
| dc.subject | 甲基丙烯酸酯改質 | zh_TW |
| dc.subject | 生物醫學水凝膠 | zh_TW |
| dc.subject | 分子動力模擬 | zh_TW |
| dc.subject | Molecular Dynamics | en |
| dc.subject | Glycol chitosan | en |
| dc.subject | Methacrylate modification | en |
| dc.subject | Biomedical hydrogels | en |
| dc.title | 以分子動力學探討不同取代度之甲基丙烯酸酯改質乙二醇殼聚醣分子結構及交互作用 | zh_TW |
| dc.title | A Study of Molecular Structure and Interaction of Methacrylate-Modified Glycol Chitosan in Various Degree of Substitution using Molecular Dynamics Simulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張書瑋;游佳欣;葉伊純 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Wei Chang;Jiashing Yu;Yi-Cheun Yeh | en |
| dc.subject.keyword | 乙二醇殼聚醣,甲基丙烯酸酯改質,生物醫學水凝膠,分子動力模擬, | zh_TW |
| dc.subject.keyword | Glycol chitosan,Methacrylate modification,Biomedical hydrogels,Molecular Dynamics, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU202501102 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-06-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2030-06-11 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 12.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
