Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98403
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛熙于zh_TW
dc.contributor.advisorHsi-Yu Schiveen
dc.contributor.author吳志恆zh_TW
dc.contributor.authorChi-Hang Ngen
dc.date.accessioned2025-08-05T16:14:06Z-
dc.date.available2025-08-06-
dc.date.copyright2025-08-05-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citationAbbas M. M., et al., 2004, The Astrophysical Journal, 614, 781
Ahles A. A., Emery J. D., Dunand D. C., 2021, Acta Astronautica, 189, 465
Arnold J. A., Weinberger A. J., Videen G., Zubko E. S., 2019, The Astronomical Journal, 157, 157
Baranov V. B., Malama Y. G., 1995, Journal of Geophysical Research, 100, 14755
Bhowmik T., et al., 2019, Astronomy & Astrophysics, 630, A85
Bockelee-Morvan D., 2015, Proceedings of the International Astronomical Union, 11, 401
Burns J. A., Lamy P. L., Soter S., 1979, Icarus, 40, 1
Castor J. I., Abbott D. C., Klein R. I., 1975, The Astrophysical Journal, 195, 157
Chiang E., Fung J., 2017, The Astrophysical Journal, 848, 4
Ciardi D. R., van Belle G. T., Akeson R. L., Thompson R. R., Lada E. A., Howell
S. B., 2001, The Astrophysical Journal, 559, 1147
Czechowski A., Mann I., 2010, The Astrophysical Journal, 714, 89
DeMeo F. E., Carry B., 2014, Nature, 505, 629
Defrère D., et al., 2011, Astronomy & Astrophysics, 534, A5
Divine N., 1993, Journal of Geophysical Research, 98, 17029
Djurišić A. B., Li E. H., 1999, Journal of Applied Physics, 85, 7404
Dolginov A. Z., Mitrofanov I. G., 1976, Ap&SS, 43, 291
Draine B. T., Flatau P. J., 2008, Journal of the Optical Society of America A, 25, 2693
Draine B. T., Lazarian A., 1998, The Astrophysical Journal, 508, 157
Draine B. T., Weingartner J. C., 1997, The Astrophysical Journal, 480, 633
Egger R. J., Freyberg M. J., Morfill G. E., 1996, Space Science Reviews, 75, 511
Friedlander S. K., 2000, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd edition edn. Oxford University Press, New York
Geiss J., Gloeckler G., von Steiger R., 1996, Space Science Reviews, 78, 43
Gopalswamy N., Hasan S., Ambastha A., eds, 2010, Heliophysical Processes. Astrophysics and Space Science Proceedings, Springer Berlin Heidelberg,
Berlin, Heidelberg, doi:10.1007/978-3-642-11341-3, http://link.springer.com/10.1007/978-3-642-11341-3
Grün E., Zook H. A., Fechtig H., Giese R. H., 1985, Icarus, 62, 244
Grün E., et al., 2009, Experimental astronomy, 23, 981
Gundlach B., et al., 2018, Monthly Notices of the Royal Astronomical Society, 479, Haack D., Otto K., Gundlach B., Kreuzig C., Bischoff D., Kührt E., Blum J., 2020, Astronomy & Astrophysics, 642, A218
Harwit M., 1970, Bulletin of the Astronomical Institutes of Czechoslovakia, 21, 204
Henin B., 2018, Exploring the Ocean Worlds of Our Solar System. Springer Cham, Switzerland, doi:10.1007/978-3-319-93476-1, https://www.springer.com/gp/book/9783319934754
Herranen J., Lazarian A., Hoang T., 2019, The Astrophysical Journal, 878, 96
Herranen J., Lazarian A., Hoang T., 2021, The Astrophysical Journal, 913, 63
Hoang T., 2019, The Astrophysical Journal, 876, 13
Hoang T., Lazarian A., 2008, Monthly Notices of the Royal Astronomical Society, 388, 117
Hoang T., Lazarian A., 2014, Monthly Notices of the Royal Astronomical Society, 438, 680
Hoang T., Lazarian A., 2016, The Astrophysical Journal, 831, 159
Hoang T., Lee H., 2019, The Astrophysical Journal, 896, 144
Hoang T., Loeb A., 2017, The Astrophysical Journal, 848, 31
Hoang T., Tram L. N., 2020, The Astrophysical Journal, 891, 38
Hoang T., Vinh N.-A., Lan N. Q., 2016, The Astrophysical Journal, 824, 18
Hoang T., Tram L. N., Lee H., Ahn S.-H., 2019, Nature Astronomy, 3, 766
Hoang T., Lazarian A., Lee H., Cho K., Gu P.-G., Ng C.-H., 2021, The Astrophysical Journal, 919, 91
Hoang T., Minh Phan V. H., Tram L. N., 2023, The Astrophysical Journal, 954, 216
Horányi M., 1996, Annual Review of Astronomy and Astrophysics, 34, 383
Howatson A. M., Lund P. G., Todd J. D., 1972, Engineering Tables and Data. Springer Netherlands, Dordrecht, doi:10.1007/978-94-010-9314-9, http://link.springer.com/10.1007/978-94-010-9314-9
Hsieh H. H., Jewitt D., 2006, Science, 312, 561
Hsu H.-W., et al., 2018, Science, 362, eaat3185, Interstellar Probe Study Team 2021, Interstellar Probe Study 2019 Report. Johns Hopkins University Applied Physics Laboratory, Maryland, USA, https://interstellarprobe.jhuapl.edu/uploadedDocs/papers/588-ISP-Study-2019-Report_PR.pdf
Ipatov S. I., Kutyrev A. S., Madsen G. J., Mather J. C., Moseley S. H., Reynolds R. J., 2008, Icarus, 194, 769
Izmodenov V. V., Kallenbach R., 2006, The physics of the heliospheric boundaries. ESA Publications Division, The Netherlands
Jorgensen J. L., Benn M., Connerney J. E. P., Denver T., Jorgensen P. S., Andersen A. C., Bolton S. J., 2021, Journal of Geophysical Research: Planets, 126, e06509
Juhász A., Horányi M., 2013, Geophysical Research Letters, 40, 2500
Jäger J. A., Reissl S., Klessen R. S., 2024, Astronomy & Astrophysics, 692, A244
Kadish J., Barber J. R., Washabaugh P. D., 2005, International Journal of Solids and Structures, 42, 5322
Keller L. P., Flynn G. J., 2022, Nature Astronomy, 6, 731
Kempf S., 2008, Planetary and Space Science, 56, 378
Kimura H., Mann I., 1998, The Astrophysical Journal, 499, 454
Kimura H., et al., 2020, Monthly Notices of the Royal Astronomical Society, 496, 1667
Kitamura R., Pilon L., Jonasz M., 2007, Applied Optics, 46, 8118
Krivov A., Löhne T., Sremčević M., 2006, Astronomy & Astrophysics, 455, 509
LLera K., Burch J., Goldstein R., Goetz C., 2020, Geophysical Research Letters, 47, e2019GL086147
Lamers H. J. G. L. M., Cassinelli J. P., 1999, Introduction to Stellar Winds, 1 edn. Cambridge University Press, doi:10.1017/CBO9781139175012, https://www.cambridge.org/core/product/identifier/9781139175012/type/book
Lazarian A., 2020, The Astrophysical Journal, 902, 97
Lazarian A., Draine B. T., 1999, The Astrophysical Journal, 520, L67
Lazarian A., Hoang T., 2007, Monthly Notices of the Royal Astronomical Society, 378, 910
Lebreton J., et al., 2013, Astronomy & Astrophysics, 555, A146
Leinert C., Richter I., Pitz E., Planck B., 1981, Astronomy and Astrophysics, 103,
Lhotka C., Narita Y., 2019, Annales Geophysicae, 37, 299
Liang M., Harder R., Robinson I., 2018, Journal of Synchrotron Radiation, 25, 757
Love S., Brownlee D., 1993, Science, pp 550–553
Mann I., 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375
Mann I., et al., 2004, Space Science Reviews, 110, 269
Mann I., Murad E., Czechowski A., 2007, Planetary and Space Science, 55, 1000
Mann G., Warmuth A., Vocks C., Rouillard A. P., 2023, Astronomy & Astrophysics, 679, A64
Mannel T., et al., 2019, Astronomy & Astrophysics, 630, A26
Mathis J., Mezger P., Panagia N., 1983, Astronomy and Astrophysics, 128, 212
McComas D. J., et al., 2015, The Astrophysical Journal, 801, 28
Meyer-Vernet N., et al., 2009, Solar Physics, 256, 463
Min M., Dullemond C., Kama M., Dominik C., 2011, Icarus, 212, 416
Minato T., Köhler M., Kimura H., Mann I., Yamamoto T., 2004, Astronomy &
Astrophysics, 424, L13
Minato T., Köhler M., Kimura H., Mann I., Yamamoto T., 2006, Astronomy &
Astrophysics, 452, 701
Morbidelli A., Chambers J., Lunine J. I., Petit J. M., Robert F., Valsecchi G. B., Cyr K. E., 2000, Meteoritics & Planetary Science, 35, 1309
Mukai T., Giese R. H., 1984, Astronomy and Astrophysics, 131, 355
Musiolik G., Beule C. d., Wurm G., 2017, Icarus, 296, 110
Nesvornỳ D., Jenniskens P., Levison H. F., Bottke W. F., Vokrouhlickỳ D., Gounelle M., 2010, The Astrophysical Journal, 713, 816
Ng C.-H., Gu P.-G., Hoang T., 2025, Monthly Notices of the Royal Astronomical Society, 538, 1944
O’Brien L., et al., 2014, Review of Scientific Instruments, 85, 035113
O’Brien L., Juhász A., Sternovsky Z., Horányi M., 2018, Planetary and Space Science, 156, 7
O’Shea E., Sternovsky Z., Malaspina D. M., 2017, Journal of Geophysical Research: Space Physics, 122, 11864
Owens M. J., Forsyth R. J., 2013, Living Reviews in Solar Physics, 10, 5
Pedersen B. M., Meyer-Vernet N., Aubier M. G., Zarka P., 1991, Journal of Geophysical Research, 96, 19187
Petrovic J. J., 2003, Journal of Materials Science, 38, 1
Podolak M., Zucker S., 2004, Meteoritics and Planetary Science, 39, 1859
Postberg F., Kempf S., Srama R., Green S., Hillier J., Mcbride N., Grun E., 2006, Icarus, 183, 122
Prockter L. M., 2005, Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 26, 175
E. M., 1979, The Astrophysical Journal, 231, 404
Rieke G. H., Gaspar A., Ballering N. P., 2016, The Astrophysical Journal, 816, 50 Rowan-Robinson M., May B., 2013, Monthly Notices of the Royal Astronomical Society, 429, 2894
Salaris M., Cassisi S., 2005, Evolution of stars and stellar populations. J. Wiley, Chichester, West Sussex, England ; Hoboken, NJ, USA
Schippers P., et al., 2015, The Astrophysical Journal, 806, 77
Seki J., Hasegawa H., 1983, Astrophysics and Space Science, 94, 177
Slavin J. D., Frisch P. C., Müller H.-R., Heerikhuisen J., Pogorelov N. V., Reach W. T., Zank G., 2012, The Astrophysical Journal, 760, 46
Stamm J., Czechowski A., Mann I., Baumann C., Myrvang M., 2019, Astronomy & Astrophysics, 626, A107
Sterken V. J., Westphal A. J., Altobelli N., Malaspina D., Postberg F., 2019, Space Science Reviews, 215, 43
Su K. Y. L., et al., 2013, The Astrophysical Journal, 763, 118
Su K. Y. L., Rieke G. H., Melis C., Jackson A. P., Smith P. S., Meng H. Y. A., Gáspár A., 2020, The Astrophysical Journal, 898, 21
Tatsuuma M., Kataoka A., Tanaka H., 2019, The Astrophysical Journal, 874, 159
Tram L. N., Hoang T., 2022, Frontiers in Astronomy and Space Sciences, 9, 923927
Tsuchiyama A., Mashio E., Imai Y., Noguchi T., Miura Y., Yano H., Nakamura T., 2009, Meteoritics and Planetary Science Supplement, 72, 5189
Voshchinnikov N., 1990, Soviet Astronomy, 34, 429
Warren S. G., Brandt R. E., 2008, Journal of Geophysical Research, 113, D14220
Wehry A., Mann I., 1999, Astronomy and Astrophysics, 341, 296
Weingartner J. C., 2006, The Astrophysical Journal, 647, 390
Wetherill G. W., 1981, Icarus, 46, 70
Wilck M., Mann I., 1996, Planetary and Space Science, 44, 493
Wyatt M. C., Clarke C. J., Booth M., 2011, Celestial Mechanics and Dynamical Astronomy, 111, 1
Ye S., Gurnett D., Kurth W., 2016, Icarus, 279, 51
Zhang Y., Zhang Y., Guo R., Cui B., 2022, Water, 14, 1363
Ziegler J. F., Ziegler M., Biersack J., 2010, Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 1818
Zubko E., 2013, Earth, Planets and Space, 65, 139
van Lieshout R., Dominik C., Kama M., Min M., 2014, Astronomy & Astrophysics, 571, A51
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98403-
dc.description.abstract本論文探討了輻射扭矩破壞(Radiative Torque Disruption, RATD)機制在太陽系內將微米級塵埃顆粒破碎成奈米顆粒過程中的作用。通過分析在不同離心力應力下的破壞時間尺度,我們證明RATD是一種高效分解微米級顆粒的過程,其效果超越其他破碎機制。此外,RATD抑制了輻射壓力對微米級顆粒的驅逐,改變了它們在太陽系內的動力學行為。

研究揭示RATD顯著改變水雪線(water snow line)位置,使其超越熱力學定義的邊界,突顯溫度與顆粒尺寸對日球層動力學的雙重影響。對於較小的顆粒,由於RATD的影響,雪線可以延伸到其熱力學定義位置之外。此外,我們建立了一個簡化模型來描述由RATD修改後的顆粒大小分佈,揭示了微米級顆粒數密度的顯著減少以及次微米級顆粒數量的相應增加。然而研究顯示,若少於80\\%塵埃顆粒通過輻射扭矩作用於高$J$吸引子(high-$J$ attractors)達到定向排列,RATD對顆粒尺寸分布的影響將顯著減弱。

最後,我們提出了測試RATD機制的實驗方法,並討論了將我們的模型應用於太陽系塵埃研究時的不確定性。
zh_TW
dc.description.abstractThis thesis investigates the role of the Radiative Torque Disruption (RATD) mechanism in the fragmentation of micrometer-sized dust grains into nanoparticles within the heliosphere. By analyzing the disruption timescales under varying centrifugal stresses, we demonstrate that RATD is an efficient process for breaking down micrometer-sized grains, surpassing other fragmentation mechanisms in its effectiveness. Additionally, RATD inhibits the expulsion of micrometer-sized grains by radiation pressure, altering their dynamical behavior within the heliosphere.

This study reveals that RATD significantly alters the water snow line's position beyond its thermally defined boundary, emphasizing the dual influence of temperature and grain size on heliospheric dynamics. For smaller grains, the snow line can extend beyond its thermally defined position due to the impact of RATD. Furthermore, we construct a simplified model to characterize the grain size distribution modified by RATD, revealing a substantial reduction in the number density of micrometer-sized grains and a corresponding increase in sub-micrometer-sized grains. However, we find that if fewer than 80\\% of dust grains are aligned at high-$J$ attractors by radiative torques, the impact of RATD on the grain size distribution is significantly weakened.

Finally, we propose experimental approaches to test the RATD mechanism and discuss the uncertainties associated with applying our model to heliospheric dust studies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:14:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-05T16:14:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要iii
Abstract v
Contents vii
List of Figures xi
Chapter 1 Introduction 1
Chapter 2 Theoretical Foundation of RATD 5
2.1 Radiation Field, Gas, and Dust Properties in the Heliosphere . . 6
2.2 Theory of Radiative Torque . . . . . . . . . . . . . . . . . . . . . 9
2.3 Rotational Damping Mechanisms and Timescales . . . . . . . . . 11
2.4 Tensile Strength of Dust Grains in the Heliosphere . . . . . . . . 14
2.5 Critical Rotational Velocity and Disruption Thresholds . . . . . . 15
2.6 RAT-Driven Grain Dynamics: High-J and Low-J Attractor . . . . 18
2.7 Impact of Ice Mantles on Rotational Disruption . . . . . . . . . . 22
2.8 Poynting-Robertson Drag and Its Effect . . . . . . . . . . . . . . 24
2.9 Trajectory of Dust Grains in a Magnetic Field . . . . . . . . . . . 27
2.10 Incorporating Rotational Disruption into Grain Size Distribution Models . . . . . . .. . . . . . . . . . . . . . . . . . 31
2.11 Modeling the Distribution of Dust Grains in high-J and low-J Attractor Points . . . . . . . . . . . . . . . . . . . . . . . 34
2.12 Incorporating the Lorentz Effect into Grain Size Distribution Models . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Chapter 3 Numerical Results 39
3.1 Disruption Sizes and Characteristic Times of Dust Grains . . . . 39
3.2 Effect of the Fraction of Grain Alignment on Grain Size Distribution 43
3.3 Effect of the Tensile Strength on Size Distribution . . . . . . . . 44
3.4 Timescale and Size Distribution Including the Lorentz Effect . . . 48
3.5 Water Snow Line of the Present Solar System . . . . . . . . . . . 50
3.6 Effects of Radiation Pressure on Particle Disruption . . . . . . . 52
3.7 Location of Disruption in the Presence of Radiation Pressure . . 56
Chapter 4 Discussion 61
4.1 Comparison of RAT Efficiency Models and Their Impact on Grain Disruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 In-Situ Dust Measurements and Future Missions . . . . . . . . . 62
4.3 Ground-Based Measurements . . . . . . . . . . . . . . . . . . . . 63
4.4 Dust Evolution in Debris Disks . . . . . . . . . . . . . . . . . . . 63
4.5 Limitations of Our Theoretical Investigation . . . . . . . . . . . . 65
Chapter 5 Summary 67
References 69
Appendix A — Characteristic Damping Time 79
Appendix B — Radiation Pressure Cross-Section Efficiency in the Rayleigh Regime 83
Appendix C — Effects of Interplanetary Magnetic Field on Grain Alignment and Disruption 85
C.1 Interplanetary magnetic fields . . . . . . . . . . . . . . . . . . . . 86
C.2 Interaction of magnetic fields with grain magnetic dipole moment 87
C.3 Interaction with grain electric dipole moment . . . . . . . . . . . 89
C.4 Relative effects of magnetic to electric torques . . . . . . . . . . . 91
C.5 k-RAT and relative effects of radiative to electric torques . . . . . 93
-
dc.language.isoen-
dc.subject塵埃、消光zh_TW
dc.subject星際介質:演化zh_TW
dc.subject星際介質:一般情況zh_TW
dc.subject太陽風zh_TW
dc.subjectextinctionen
dc.subjectdusten
dc.subjectsolar winden
dc.subjectSM: generalen
dc.subjectSM: evolutionen
dc.title輻射力矩對塵埃的破壞及對日光層塵埃尺寸演變的影響的研究zh_TW
dc.titleInvestigating the influence of the radiative torque disruption on the size evolution of dust in the heliosphereen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor辜品高zh_TW
dc.contributor.coadvisorPin-Gao Guen
dc.contributor.oralexamcommitteeThiem Hoang;林明楷;李悅寧;葉永烜zh_TW
dc.contributor.oralexamcommitteeThiem Hoang;Min-Kai Lin;Yueh-Ning Lee;Wing-Huen Ipen
dc.subject.keyword塵埃、消光,星際介質:演化,星際介質:一般情況,太陽風,zh_TW
dc.subject.keyworddust, extinction,SM: evolution,SM: general,solar wind,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202501513-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-28-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2025-08-06-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf1.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved