Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98398
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor畢南怡zh_TW
dc.contributor.advisorNanyi Bien
dc.contributor.author侯岳昇zh_TW
dc.contributor.authorYueh-Sheng Houen
dc.date.accessioned2025-08-05T16:12:56Z-
dc.date.available2025-08-06-
dc.date.copyright2025-08-05-
dc.date.issued2025-
dc.date.submitted2025-07-24-
dc.identifier.citation[1] V. Ambrosini and C. Bowman. Tacit knowledge: Some suggestions for operationalization. Journal of Management Studies, 38(6):811–829, 2001.
[2] L. Argote and E. Miron-Spektor. Organizational learning: From experience to knowledge. Organization Science, 22(5):1123–1137, 2011.
[3] K. Berthold, M. Nückles, and A. Renkl. Do learning protocols support learning strategies and outcomes? The role of cognitive and metacognitive prompts. Learning and Instruction, 17(5):564–577, 2007.
[4] R. A. Bjork. Memory and metamemory considerations in the training of human beings. 1994.
[5] K. Bolander Laksov and C. McGrath. Failure as a catalyst for learning: Towards deliberate reflection in academic development work, 2020.
[6] D. Boud, R. Keogh, and D. Walker. Reflection: Turning Experience into Learning. Routledge, 2013.
[7] J. S. Brown and P. Duguid. Knowledge and organization: A social-practice perspective. Organization Science, 12(2):198–213, 2001.
[8] C.-W. Chen, M.-L. Chang, and C.-P. Tseng. Retracted: Human factors of knowledge sharing intention among Taiwanese enterprises: A model of hypotheses. Human Factors and Ergonomics in Manufacturing & Service Industries, 22(4):362–371, 2012.
[9] M. Chikhalsouk, H. AlHajjar, Y. El-Okda, and K. Adref. The effect of self-reflection as an assessment tool for improving universities' students performance: case study. In 2019 Advances in Science and Engineering Technology International Conferences (ASET), pages 1–6. IEEE, 2019.
[10] S. G. Chowrira, K. M. Smith, P. J. Dubois, and I. Roll. DIY productive failure: Boosting performance in a large undergraduate biology course. npj Science of Learning, 4(1):1, 2019.
[11] M. R. Endsley. Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1):32–64, 1995.
[12] S. Engelmann and D. Carnine. Theory of Instruction: Principles and Applications. Irvington Publishers New York, 1982.
[13] M. Eraut. Non-formal learning and tacit knowledge in professional work. British Journal of Educational Psychology, 70(1):113–136, 2000.
[14] D. E. Gray. Facilitating management learning: Developing critical reflection through reflective tools. Management Learning, 38(5):495–517, 2007.
[15] J. A. Groeger. Understanding Driving: Applying Cognitive Psychology to a Complex Everyday Task. Routledge, 2013.
[16] Z. Guo, D. Zhou, Q. Zhou, X. Zhang, J. Geng, S. Zeng, C. Lv, and A. Hao. Applications of virtual reality in maintenance during the industrial product lifecycle: A systematic review. Journal of Manufacturing Systems, 56:525–538, 2020.
[17] S. G. Hart. NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50:904–908. Sage Publications, 2006.
[18] V. Hasenstab and M. Pietzonka. Self-reflection as a tool to uncover tacit knowledge in a learning organization.
[19] H. Hullfish. Reflective Thinking: The Method of Education. Dodd, Mead & Company, 1961.
[20] M. Kapur. Productive failure. Cognition and Instruction, 26(3):379–424, 2008.
[21] M. Kapur. Learning from productive failure. Learning: Research and Practice, 1(1):51–65, 2015.
[22] M. Kapur. Examining productive failure, productive success, unproductive failure, and unproductive success in learning. Educational Psychologist, 51(2):289–299, 2016.
[23] M. Kapur and K. Bielaczyc. Designing for productive failure. Journal of the Learning Sciences, 21(1):45–83, 2012.
[24] D. Kember, D. Y. Leung, A. Jones, A. Y. Loke, J. McKay, K. Sinclair, H. Tse, C. Webb, F. K. Yuet Wong, M. Wong, et al. Development of a questionnaire to measure the level of reflective thinking. Assessment & Evaluation in Higher Education, 25(4):381–395, 2000.
[25] J. L. Kolodner. Educational implications of analogy: A view from case-based reasoning. American Psychologist, 52(1):57, 1997.
[26] A. Y. Lee and L. Hutchison. Improving learning from examples through reflection. Journal of Experimental Psychology: Applied, 4(3):187, 1998.
[27] D. Leonard and S. Sensiper. The role of tacit knowledge in group innovation. California Management Review, 40(3):112–132, 1998.
[28] C. T. Matthew and R. J. Sternberg. Developing experience-based (tacit) knowledge through reflection. Learning and Individual Differences, 19(4):530–540, 2009.
[29] F. P. Mckenna and J. Crick. Hazard perception in drivers: A methodology for testing and training. TRL Contractor Report, (313), 1994.
[30] M. D. Merrill. First Principles of Instruction. John Wiley & Sons, 2012.
[31] T. A. Mikropoulos and A. Natsis. Educational virtual environments: A ten-year review of empirical research (1999–2009). Computers & Education, 56(3):769–780, 2011.
[32] J. A. Moon. Reflection in Learning and Professional Development: Theory and Practice. Routledge, 2013.
[33] C. L. Morgan. An Introduction to Comparative Psychology, volume 27. W. Scott, 1903.
[34] E. Namey, G. Guest, L. Thairu, L. Johnson, et al. Data reduction techniques for large qualitative data sets. Handbook for Team-Based Qualitative Research, 2(1):137–161, 2008.
[35] J. E. Naranjo, D. G. Sanchez, A. Robalino-Lopez, P. Robalino-Lopez, A. Alarcon Ortiz, and M. V. Garcia. A scoping review on virtual reality-based industrial training. Applied Sciences, 10(22):8224, 2020.
[36] I. Nonaka and H. Takeuchi. The Wise Company: How Companies Create Continuous Innovation. Oxford University Press, 2019.
[37] I. Nonaka and G. Von Krogh. Perspective—tacit knowledge and knowledge conversion: Controversy and advancement in organizational knowledge creation theory. Organization Science, 20(3):635–652, 2009.
[38] F. Paas, A. Renkl, and J. Sweller. Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1):1–4, 2003.
[39] M. Polanyi. Tacit knowing. Knowledge, 2:101–114, 2005.
[40] M. Polanyi. The tacit dimension. In Knowledge in Organisations, pages 135–146. Routledge, 2009.
[41] P. Sandeep and D. Gupta. Introducing failure as a deliberate instructional strategy to enhance learning and academic outcomes. In 2019 IEEE Tenth International Conference on Technology for Education (T4E), pages 67–70. IEEE, 2019.
[42] D. A. Schön. The Reflective Practitioner: How Professionals Think in Action. Routledge, 2017.
[43] T. Sinha, M. Kapur, R. West, M. Catasta, M. Hauswirth, and D. Trninic. Differential benefits of explicit failure-driven and success-driven scaffolding in problem-solving prior to instruction. Journal of Educational Psychology, 113(3):530, 2021.
[44] N. Steenhof, N. N. Woods, P. W. Van Gerven, and M. Mylopoulos. Productive failure as an instructional approach to promote future learning. Advances in Health Sciences Education, 24:739–749, 2019.
[45] S. Stenfors. Strategy tools and strategy toys: Management tools in strategy work. 2007.
[46] R. J. Sternberg and E. L. Grigorenko. Practical Intelligence and Its Development. 2000.
[47] R. J. Sternberg and J. Hedlund. Practical intelligence, g, and work psychology. In Role of General Mental Ability in Industrial, Work, and Organizational Psychology, pages 143–160. Psychology Press, 2002.
[48] A. A. Tawfik, H. Rong, and I. Choi. Failing to learn: Towards a unified design approach for failure-based learning. Educational Technology Research and Development, 63:975–994, 2015.
[49] S. Thorgeirsson, T. Sinha, F. Friedrich, and Z. Su. Does deliberately failing improve learning in introductory computer science? In European Conference on Technology Enhanced Learning, pages 608–614. Springer, 2022.
[50] G. Von Krogh, K. Ichijo, and I. Nonaka. Enabling Knowledge Creation: How to Unlock the Mystery of Tacit Knowledge and Release the Power of Innovation. Oxford University Press, 2000.
[51] G. H. Walker, N. A. Stanton, and M. S. Young. Where is computing driving cars? International Journal of Human-Computer Interaction, 13(2):203–229, 2001.
[52] S. S. H. Wong. Deliberate erring improves far transfer of learning more than errorless elaboration and spotting and correcting others' errors. Educational Psychology Review, 35(1):16, 2023.
[53] H.-C. Yang, M.-Q. Chen, and I.-L. Lin. Application of big data analysis of traffic accidents and violation reports for improving traffic safety. Sensors and Materials, 36(3):1243–1249, 2024.
[54] B. J. Zimmerman. A social cognitive view of self-regulated academic learning. Journal of Educational Psychology, 81(3):329, 1989.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98398-
dc.description.abstract隨著科技不斷進步,虛擬實境技術逐漸融入我們的日常生活,尤其是在駕駛訓練等領域中。以虛擬實境為基礎的駕駛訓練系統提供了一種獨特的方式,使學習者能夠在安全且可控的環境中反覆練習駕駛技能。儘管許多研究證實了虛擬實境能夠提高駕駛學習的效果和使用者的學習滿意度,但目前針對如即時反應和駕駛習慣方面等隱性駕駛知識的研究仍然較少。因此,本研究旨在探討在駕駛訓練中使用VR系統時,若引導學習者故意犯錯,是否能提升隱性駕駛知識的傳遞效果。我們希望通過這項研究提供實證,了解這種反向教學模式是否能增強隱性駕駛知識的學習效果,並促進更有效且引人入勝的駕駛訓練體驗,為有意導入虛擬實境駕駛訓練系統的機構和企業提供參考。zh_TW
dc.description.abstractAs technology advances, virtual reality (VR) is becoming increasingly integrated into everyday life, particularly in fields such as driver training. VR-based driving systems allow learners to repeatedly practice driving skills in a safe and controlled environment. While previous studies have demonstrated that VR can enhance driving performance and user satisfaction, limited research has examined its impact on the transfer of tacit driving knowledge such as real-time reactions and habitual behaviors. This study investigates whether intentionally guiding learners to make mistakes during VR-based driver training through a “reverse teaching” approach can enhance the transfer of tacit knowledge. The findings aim to provide empirical evidence on whether this method fosters a more effective and engaging training experience, offering practical insights for organizations considering the adoption of VR in driver education.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:12:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-05T16:12:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents

致謝 i
摘要                    ii
Abstract                    iii
Contents                         iv
List of Figures                    viii
List of Tables                     ix

Chapter 1 Introduction             1
1.1 Background and Motivation       1
1.2 Research Purpose            2

Chapter 2 Related Work           4
2.1 Tacit Knowledge                  4
  2.1.1 Tacit Knowledge in Driving      5
2.2 Virtual Reality                  5
  2.2.1 The Role of VR in Training     5
  2.2.2 VR as a Technological Solution for Tacit Knowledge Learning  6
2.3 Different Types of Teaching        6
  2.3.1 Traditional Teaching        6
  2.3.2 No-Guidance Teaching      7
    2.3.2.1 Productive Failure     7
    2.3.2.2 Failure-Driven Memory   8
  2.3.3 Reverse Teaching        9
    2.3.3.1 Failure-Driven Scaffolding  9
2.4 Reflection                  10
  2.4.1 Reflection and Tacit Knowledge 11
  2.4.2 Reflection and Performance   11
  2.4.3 Reflection and Cognitive Load 12
2.5 Research Question and Hypothesis  12

Chapter 3 Method              15
3.1 Participants                 15
3.2 Procedure                  15
3.3 Materials                   16
3.4 Driving Scenario             17
3.5 Tacit Knowledge Design        17
3.6 Design of Teaching           19
  3.6.1 Traditional Teaching       19
  3.6.2 No-Guidance Teaching     21
  3.6.3 Reverse Teaching       21
3.7 Measure                  23
  3.7.1 Test Performance        23
  3.7.2 Tacit Knowledge Learning Acquisition 25
    3.7.2.1 Eye Tracking       25
    3.7.2.2 Content Analysis of Tacit Knowledge from Interviews 25
  3.7.3 VR Experience         27
    3.7.3.1 Reflection        27
    3.7.3.2 Critical Reflection    27
    3.7.3.3 Cognitive Load     28

Chapter 4 Results              29
4.1 Data Collection and Quality Assurance Measures 29
  4.1.1 Participant Recruitment    29
  4.1.2 Attention Check        29
  4.1.3 Manipulation Check      29
4.2 Descriptive Analysis          30
  4.2.1 Demographic         30
4.3 Quantitative Analysis         31
  4.3.1 Reliability and Validity Analysis 31
  4.3.2 User Perceived Learning Experience and Coded Insights 32
  4.3.3 PLS-SEM Analysis of Reflection as a Mediator  33
  4.3.4 Eye-Tracking Data Analysis  35
4.4 Qualitative Analysis          36
  4.4.1 Learning Experience of Reverse Teaching Mode 36
  4.4.2 Learning Experience of No-Guidance Teaching Mode 38
  4.4.3 Learning Experience of Traditional Teaching Mode 39

Chapter 5 Discussion           43
5.1 Implications               43
  5.1.1 Reflection           43
  5.1.2 Cognitive Load        45
  5.1.3 Driving Test Score      46
  5.1.4 Tacit Knowledge       47
5.2 Limitations               49
  5.2.1 Sample Size and Demographic Representativeness 49
  5.2.2 VR-Induced Discomfort and Time Constraints 50
  5.2.3 Limited Simulation Degrees of Freedom 50
  5.2.4 Lack of Cultural and Environmental Authenticity 50
  5.2.5 Unclear Order Between Self-Reflection and Tacit Knowledge 51
5.3 Future Directions            51
  5.3.1 Enhancing Local Realism in Scene Design 51
  5.3.2 Expanding Scenario Design to Cover Broader Tacit Skills 52
  5.3.3 Improving Reflective Support in Reverse Teaching Design 52

Chapter 6 Conclusion            54

References                       57

Appendix A — Questionnaire          64
A.1 Reflection                  64
A.2 Critical Reflection             64
A.3 Cognitive Loading            65
A.4 Manipulation Check           65

Appendix B — Interviews             66
-
dc.language.isoen-
dc.subject隱性知識傳遞zh_TW
dc.subject虛擬實境zh_TW
dc.subject駕駛技能zh_TW
dc.subject模擬學習zh_TW
dc.subject駕駛訓練zh_TW
dc.subjectDriving Trainingen
dc.subjectSimulation Based Learningen
dc.subjectDriving Skillsen
dc.subjectTacit Knowledge Transferen
dc.subjectVirtual Realityen
dc.title虛擬實境提升隱性知識傳遞效果 - 以練習駕駛汽車為例zh_TW
dc.titleImproving Tacit Knowledge Transfer with Virtual Reality: An Experiment in Car Driving Trainingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee彭志宏;袁千雯zh_TW
dc.contributor.oralexamcommitteeChih-Hung Peng;Chien-Wen Yuanen
dc.subject.keyword虛擬實境,隱性知識傳遞,駕駛訓練,模擬學習,駕駛技能,zh_TW
dc.subject.keywordVirtual Reality,Tacit Knowledge Transfer,Driving Training,Simulation Based Learning,Driving Skills,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202502263-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-28-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2025-08-06-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf7.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved