Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98369Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 呂俊毅 | zh_TW |
| dc.contributor.advisor | Jun-Yi Leu | en |
| dc.contributor.author | 阮氏銀江 | zh_TW |
| dc.contributor.author | Nguyen Thi Ngan Giang | en |
| dc.date.accessioned | 2025-08-05T16:05:57Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2025-08-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-23 | - |
| dc.identifier.citation | Abresch, H., T. Bell and S. R. Miller (2024). "Diurnal transcriptional variation is reduced in a nitrogen-fixing diatom endosymbiont." ISME J 18(1).
Akerman, M. and Y. Mandel-Gutfreund (2006). "Alternative splicing regulation at tandem 3' splice sites." Nucleic Acids Res 34(1): 23-31. Alonso, C. R. (2005). "Nonsense-mediated RNA decay: a molecular system micromanaging individual gene activities and suppressing genomic noise." Bioessays 27(5): 463-466. Archibald, J. M. (2015). "Endosymbiosis and Eukaryotic Cell Evolution." Curr Biol 25(19): R911-921. Arnaiz, O., E. Van Dijk, M. Betermier, M. Lhuillier-Akakpo, A. de Vanssay, S. Duharcourt, E. Sallet, J. Gouzy and L. Sperling (2017). "Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression." BMC Genomics 18(1): 483. Baralle, F. E. and J. Giudice (2017). "Alternative splicing as a regulator of development and tissue identity." Nat Rev Mol Cell Biol 18(7): 437-451. Behzadnia, N., M. M. Golas, K. Hartmuth, B. Sander, B. Kastner, J. Deckert, P. Dube, C. L. Will, H. Urlaub, H. Stark and R. Luhrmann (2007). "Composition and three-dimensional EM structure of double affinity-purified, human prespliceosomal A complexes." EMBO J 26(6): 1737-1748. Bennett, G. M., Y. Kwak and R. Maynard (2024). "Endosymbioses Have Shaped the Evolution of Biological Diversity and Complexity Time and Time Again." Genome Biol Evol 16(6). Birzele, F., G. Csaba and R. Zimmer (2008). "Alternative splicing and protein structure evolution." Nucleic Acids Res 36(2): 550-558. Bondarenko, V. S. and M. S. Gelfand (2016). "Evolution of the Exon-Intron Structure in Ciliate Genomes." PLoS One 11(9): e0161476. Boutz, P. L., P. Stoilov, Q. Li, C. H. Lin, G. Chawla, K. Ostrow, L. Shiue, M. Ares, Jr. and D. L. Black (2007). "A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons." Genes Dev 21(13): 1636-1652. Castillo-Davis, C. I., S. L. Mekhedov, D. L. Hartl, E. V. Koonin and F. A. Kondrashov (2002). "Selection for short introns in highly expressed genes." Nat Genet 31(4): 415-418. Chao, Y., Y. Jiang, M. Zhong, K. Wei, C. Hu, Y. Qin, Y. Zuo, L. Yang, Z. Shen and C. Zou (2021). "Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health." Cell Biosci 11(1): 66. Chen, M. and J. L. Manley (2009). "Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches." Nat Rev Mol Cell Biol 10(11): 741-754. Chen, S., Y. Zhou, Y. Chen and J. Gu (2018). "fastp: an ultra-fast all-in-one FASTQ preprocessor." Bioinformatics 34(17): i884-i890. Chen, Y. I., R. E. Moore, H. Y. Ge, M. K. Young, T. D. Lee and S. W. Stevens (2007). "Proteomic analysis of in vivo-assembled pre-mRNA splicing complexes expands the catalog of participating factors." Nucleic Acids Res 35(12): 3928-3944. Cheng, Y. H., C. J. Liu, Y. H. Yu, Y. T. Jhou, M. Fujishima, I. J. Tsai and J. Y. Leu (2020). "Genome plasticity in Paramecium bursaria revealed by population genomics." BMC Biol 18(1): 180. Cvitkovic, I. and M. S. Jurica (2013). "Spliceosome database: a tool for tracking components of the spliceosome." Nucleic Acids Res 41(Database issue): D132-141. Damgaard, C. K., S. Kahns, S. Lykke-Andersen, A. L. Nielsen, T. H. Jensen and J. Kjems (2008). "A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo." Mol Cell 29(2): 271-278. Das, R., J. Yu, Z. Zhang, M. P. Gygi, A. R. Krainer, S. P. Gygi and R. Reed (2007). "SR proteins function in coupling RNAP II transcription to pre-mRNA splicing." Mol Cell 26(6): 867-881. Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson and T. R. Gingeras (2013). "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29(1): 15-21. Domazet-Loso, T., J. Brajkovic and D. Tautz (2007). "A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages." Trends Genet 23(11): 533-539. Ferrarini, M. G., A. Vallier, C. Vincent-Monegat, E. Dell'Aglio, B. Gillet, S. Hughes, O. Hurtado, G. Condemine, A. Zaidman-Remy, R. Rebollo, N. Parisot and A. Heddi (2023). "Coordination of host and endosymbiont gene expression governs endosymbiont growth and elimination in the cereal weevil Sitophilus spp." Microbiome 11(1): 274. Fujishima, M. and Y. Kodama (2012). "Endosymbionts in paramecium." Eur J Protistol 48(2): 124-137. Gnan, S., M. Matelot, M. Weiman, O. Arnaiz, F. Guerin, L. Sperling, M. Betermier, C. Thermes, C. L. Chen and S. Duharcourt (2022). "GC content, but not nucleosome positioning, directly contributes to intron splicing efficiency in Paramecium." Genome Res 32(4): 699-709. Griffiths-Jones, S., A. Bateman, M. Marshall, A. Khanna and S. R. Eddy (2003). "Rfam: an RNA family database." Nucleic Acids Res 31(1): 439-441. Hamada, M., K. Schroder, J. Bathia, U. Kurn, S. Fraune, M. Khalturina, K. Khalturin, C. Shinzato, N. Satoh and T. C. Bosch (2018). "Metabolic co-dependence drives the evolutionarily ancient Hydra-Chlorella symbiosis." Elife 7. Han, B. Y., Z. Liu, X. Hu and H. Ling (2022). "HNRNPU promotes the progression of triple-negative breast cancer via RNA transcription and alternative splicing mechanisms." Cell Death Dis 13(11): 940. Hang, J., R. Wan, C. Yan and Y. Shi (2015). "Structural basis of pre-mRNA splicing." Science 349(6253): 1191-1198. Haynes, W. J., K. Y. Ling, Y. Saimi and C. Kung (2003). "PAK paradox: Paramecium appears to have more K(+)-channel genes than humans." Eukaryot Cell 2(4): 737-745. He, M., J. Wang, X. Fan, X. Liu, W. Shi, N. Huang, F. Zhao and M. Miao (2019). "Genetic basis for the establishment of endosymbiosis in Paramecium." ISME J 13(5): 1360-1369. Hiller, M., K. Huse, K. Szafranski, N. Jahn, J. Hampe, S. Schreiber, R. Backofen and M. Platzer (2004). "Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity." Nat Genet 36(12): 1255-1257. Howe, K. L., P. Achuthan, J. Allen, J. Allen, J. Alvarez-Jarreta, M. R. Amode, I. M. Armean, A. G. Azov, R. Bennett, J. Bhai, K. Billis, S. Boddu, M. Charkhchi, C. Cummins, L. Da Rin Fioretto, C. Davidson, K. Dodiya, B. El Houdaigui, R. Fatima, A. Gall, C. Garcia Giron, T. Grego, C. Guijarro-Clarke, L. Haggerty, A. Hemrom, T. Hourlier, O. G. Izuogu, T. Juettemann, V. Kaikala, M. Kay, I. Lavidas, T. Le, D. Lemos, J. Gonzalez Martinez, J. C. Marugan, T. Maurel, A. C. McMahon, S. Mohanan, B. Moore, M. Muffato, D. N. Oheh, D. Paraschas, A. Parker, A. Parton, I. Prosovetskaia, M. P. Sakthivel, A. I. A. Salam, B. M. Schmitt, H. Schuilenburg, D. Sheppard, E. Steed, M. Szpak, M. Szuba, K. Taylor, A. Thormann, G. Threadgold, B. Walts, A. Winterbottom, M. Chakiachvili, A. Chaubal, N. De Silva, B. Flint, A. Frankish, S. E. Hunt, I. I. GR, N. Langridge, J. E. Loveland, F. J. Martin, J. M. Mudge, J. Morales, E. Perry, M. Ruffier, J. Tate, D. Thybert, S. J. Trevanion, F. Cunningham, A. D. Yates, D. R. Zerbino and P. Flicek (2021). "Ensembl 2021." Nucleic Acids Res 49(D1): D884-D891. Jenkins, B. H. (2024). "Mutualism on the edge: Understanding the Paramecium-Chlorella symbiosis." PLoS Biol 22(4): e3002563. Johnson, P. Z. and A. E. Simon (2023). "RNAcanvas: interactive drawing and exploration of nucleic acid structures." Nucleic Acids Res 51(W1): W501-W508. Jones, P., D. Binns, H. Y. Chang, M. Fraser, W. Li, C. McAnulla, H. McWilliam, J. Maslen, A. Mitchell, G. Nuka, S. Pesseat, A. F. Quinn, A. Sangrador-Vegas, M. Scheremetjew, S. Y. Yong, R. Lopez and S. Hunter (2014). "InterProScan 5: genome-scale protein function classification." Bioinformatics 30(9): 1236-1240. Kalsotra, A. and T. A. Cooper (2011). "Functional consequences of developmentally regulated alternative splicing." Nat Rev Genet 12(10): 715-729. Kannan, L. and W. C. Wheeler (2012). "Maximum Parsimony on Phylogenetic networks." Algorithms Mol Biol 7(1): 9. Keeling, P. J. (2013). "The number, speed, and impact of plastid endosymbioses in eukaryotic evolution." Annu Rev Plant Biol 64: 583-607. Kelly, J. B., D. E. Carlson, M. Reuter, A. Sommershof, L. Adamec and L. Becks (2025). "Genomic Signatures of Adaptation to Stress Reveal Shared Evolutionary Trends Between Tetrahymena utriculariae and Its Algal Endosymbiont, Micractinium tetrahymenae." Mol Biol Evol 42(2). Kelly, S. (2021). "The economics of organellar gene loss and endosymbiotic gene transfer." Genome Biol 22(1): 345. Kenny, C. J., M. P. McGurk, S. Schuler, A. Cordero, S. Laubinger and C. B. Burge (2025). "LUC7 proteins define two major classes of 5' splice sites in animals and plants." Nat Commun 16(1): 1574. Keppetipola, N., S. Sharma, Q. Li and D. L. Black (2012). "Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2." Crit Rev Biochem Mol Biol 47(4): 360-378. Kervestin, S. and A. Jacobson (2012). "NMD: a multifaceted response to premature translational termination." Nat Rev Mol Cell Biol 13(11): 700-712. Kjer-Hansen, P. and R. J. Weatheritt (2023). "The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts." Nat Struct Mol Biol 30(12): 1844-1856. Kodama, Y. and M. Fujishima (2010). "Secondary symbiosis between Paramecium and Chlorella cells." International review of cell and molecular biology 279: 33-77. Kodama, Y. and M. Fujishima (2022). "Endosymbiotic Chlorella variabilis reduces mitochondrial number in the ciliate Paramecium bursaria." Sci Rep 12(1): 8216. Kodama, Y., I. Inouye and M. Fujishima (2011). "Symbiotic Chlorella vulgaris of the ciliate Paramecium bursaria plays an important role in maintaining perialgal vacuole membrane functions." Protist 162(2): 288-303. Koretke, K. K., A. N. Lupas, P. V. Warren, M. Rosenberg and J. R. Brown (2000). "Evolution of two-component signal transduction." Mol Biol Evol 17(12): 1956-1970. Lee, S. J., M. D. Zdradzinski, P. K. Sahoo, A. N. Kar, P. Patel, R. Kawaguchi, B. J. Aguilar, K. D. Lantz, C. R. McCain, G. Coppola, Q. Lu and J. L. Twiss (2021). "Selective axonal translation of the mRNA isoform encoding prenylated Cdc42 supports axon growth." J Cell Sci 134(7). Li, S., Y. Wang, Y. Zhao, X. Zhao, X. Chen and Z. Gong (2020). "Global Co-transcriptional Splicing in Arabidopsis and the Correlation with Splicing Regulation in Mature RNAs." Mol Plant 13(2): 266-277. Lim, C. S., B. N. Weinstein, S. W. Roy and C. M. Brown (2021). "Analysis of Fungal Genomes Reveals Commonalities of Intron Gain or Loss and Functions in Intron-Poor Species." Mol Biol Evol 38(10): 4166-4186. Lin, K. and D. Y. Zhang (2005). "The excess of 5' introns in eukaryotic genomes." Nucleic Acids Res 33(20): 6522-6527. Love, M. I., W. Huber and S. Anders (2014). "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2." Genome Biol 15(12): 550. Martin, W. F., S. Garg and V. Zimorski (2015). "Endosymbiotic theories for eukaryote origin." Philos Trans R Soc Lond B Biol Sci 370(1678): 20140330. McGlincy, N. J., A. Valomon, J. E. Chesham, E. S. Maywood, M. H. Hastings and J. Ule (2012). "Regulation of alternative splicing by the circadian clock and food related cues." Genome Biol 13(6): R54. Miller, J. N. and D. A. Pearce (2014). "Nonsense-mediated decay in genetic disease: friend or foe?" Mutat Res Rev Mutat Res 762: 52-64. Nawrocki, E. P. and S. R. Eddy (2013). "Infernal 1.1: 100-fold faster RNA homology searches." Bioinformatics 29(22): 2933-2935. Nilsen, T. W. and B. R. Graveley (2010). "Expansion of the eukaryotic proteome by alternative splicing." Nature 463(7280): 457-463. Nott, A., S. H. Meislin and M. J. Moore (2003). "A quantitative analysis of intron effects on mammalian gene expression." Rna 9(5): 607-617. Nuadthaisong, J., T. Phetruen, C. Techawisutthinan and S. Chanarat (2022). "Insights into the Mechanism of Pre-mRNA Splicing of Tiny Introns from the Genome of a Giant Ciliate Stentor coeruleus." Int J Mol Sci 23(18). Olivieri, J. E., R. Dehghannasiri, P. L. Wang, S. Jang, A. de Morree, S. Y. Tan, J. Ming, A. Ruohao Wu, C. Tabula Sapiens, S. R. Quake, M. A. Krasnow and J. Salzman (2021). "RNA splicing programs define tissue compartments and cell types at single-cell resolution." Elife 10. Olthof, A. M., C. F. Schwoerer, K. N. Girardini, A. L. Weber, K. Doggett, S. Mieruszynski, J. K. Heath, T. E. Moore, J. Biran and R. N. Kanadia (2024). "Taxonomy of introns and the evolution of minor introns." Nucleic Acids Res 52(15): 9247-9266. Palacios, I. M. (2013). "Nonsense-mediated mRNA decay: from mechanistic insights to impacts on human health." Brief Funct Genomics 12(1): 25-36. Pan, B., F. Ye, T. Li, F. Wei, A. Warren, Y. Wang and S. Gao (2023). "Potential role of N(6)-adenine DNA methylation in alternative splicing and endosymbiosis in Paramecium bursaria." iScience 26(5): 106676. Pan, Q., O. Shai, L. J. Lee, B. J. Frey and B. J. Blencowe (2008). "Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing." Nat Genet 40(12): 1413-1415. Park, S. G., S. Hannenhalli and S. S. Choi (2014). "Conservation in first introns is positively associated with the number of exons within genes and the presence of regulatory epigenetic signals." BMC Genomics 15(1): 526. Patro, R., G. Duggal, M. I. Love, R. A. Irizarry and C. Kingsford (2017). "Salmon provides fast and bias-aware quantification of transcript expression." Nat Methods 14(4): 417-419. Plaschka, C., P. C. Lin, C. Charenton and K. Nagai (2018). "Prespliceosome structure provides insights into spliceosome assembly and regulation." Nature 559(7714): 419-422. Quinlan, A. R. and I. M. Hall (2010). "BEDTools: a flexible suite of utilities for comparing genomic features." Bioinformatics 26(6): 841-842. Roy, K. R., J. Gabunilas, D. Neutel, M. Ai, Z. Yeh, J. Samson, G. Lyu and G. F. Chanfreau (2023). "Splicing factor Prp18p promotes genome-wide fidelity of consensus 3'-splice sites." Nucleic Acids Res 51(22): 12428-12442. Ryll, J., R. Rothering and F. Catania (2022). "Intronization Signatures in Coding Exons Reveal the Evolutionary Fluidity of Eukaryotic Gene Architecture." Microorganisms 10(10). Sakurai, A., S. Fujimori, H. Kochiwa, S. Kitamura-Abe, T. Washio, R. Saito, P. Carninci, Y. Hayashizaki and M. Tomita (2002). "On biased distribution of introns in various eukaryotes." Gene 300(1-2): 89-95. Saudemont, B., A. Popa, J. L. Parmley, V. Rocher, C. Blugeon, A. Necsulea, E. Meyer and L. Duret (2017). "The fitness cost of mis-splicing is the main determinant of alternative splicing patterns." Genome Biol 18(1): 208. Schirman, D., Z. Yakhini, Y. Pilpel and O. Dahan (2021). "A broad analysis of splicing regulation in yeast using a large library of synthetic introns." PLoS Genet 17(9): e1009805. Seol, D. W. and T. R. Billiar (1999). "A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis." J Biol Chem 274(4): 2072-2076. Shaul, O. (2017). "How introns enhance gene expression." Int J Biochem Cell Biol 91(Pt B): 145-155. Shen, S., J. W. Park, Z. X. Lu, L. Lin, M. D. Henry, Y. N. Wu, Q. Zhou and Y. Xing (2014). "rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data." Proc Natl Acad Sci U S A 111(51): E5593-5601. Soneson, C., M. I. Love and M. D. Robinson (2015). "Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences." F1000Res 4: 1521. Steinegger, M. and J. Soding (2017). "MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets." Nat Biotechnol 35(11): 1026-1028. Stover, N. A., R. S. Punia, M. S. Bowen, S. B. Dolins and T. G. Clark (2012). "Tetrahymena Genome Database Wiki: a community-maintained model organism database." Database (Oxford) 2012: bas007. Suzuki, S., K. Ishida and Y. Hirakawa (2016). "Diurnal Transcriptional Regulation of Endosymbiotically Derived Genes in the Chlorarachniophyte Bigelowiella natans." Genome Biol Evol 8(9): 2672-2682. Sweeney, B. A., D. Hoksza, E. P. Nawrocki, C. E. Ribas, F. Madeira, J. J. Cannone, R. Gutell, A. Maddala, C. D. Meade and L. D. Williams (2021). "R2DT is a framework for predicting and visualising RNA secondary structure using templates." Nature Communications 12(1): 3494. Takashima, S., W. Sun, A. B. C. Otten, P. Cai, S. I. Peng, E. Tong, J. Bui, M. Mai, O. Amarbayar, B. Cheng, R. J. Odango, Z. Li, K. Qu and B. K. Sun (2024). "Alternative mRNA splicing events and regulators in epidermal differentiation." Cell Rep 43(3): 113814. Takayama, K. I., T. Suzuki, K. Sato, Y. Saito and S. Inoue (2024). "Cooperative nuclear action of RNA-binding proteins PSF and G3BP2 to sustain neuronal cell viability is decreased in aging and dementia." Aging Cell 23(12): e14316. Takei, S., M. Togo-Ohno, Y. Suzuki and H. Kuroyanagi (2016). "Evolutionarily conserved autoregulation of alternative pre-mRNA splicing by ribosomal protein L10a." Nucleic Acids Res 44(12): 5585-5596. Ullrich, S. and R. Guigo (2020). "Dynamic changes in intron retention are tightly associated with regulation of splicing factors and proliferative activity during B-cell development." Nucleic Acids Res 48(3): 1327-1340. Verta, J. P. and A. Jacobs (2022). "The role of alternative splicing in adaptation and evolution." Trends Ecol Evol 37(4): 299-308. von der Dunk, S. H. A., P. Hogeweg and B. Snel (2023). "Obligate endosymbiosis enables genome expansion during eukaryogenesis." Commun Biol 6(1): 777. Wang, Y., J. Liu, B. O. Huang, Y. M. Xu, J. Li, L. F. Huang, J. Lin, J. Zhang, Q. H. Min, W. M. Yang and X. Z. Wang (2015). "Mechanism of alternative splicing and its regulation." Biomed Rep 3(2): 152-158. Wang, Z. and C. B. Burge (2008). "Splicing regulation: from a parts list of regulatory elements to an integrated splicing code." RNA 14(5): 802-813. Wang, Z., X. Xiao, E. Van Nostrand and C. B. Burge (2006). "General and specific functions of exonic splicing silencers in splicing control." Mol Cell 23(1): 61-70. Ward, N. and G. Moreno-Hagelsieb (2014). "Quickly finding orthologs as reciprocal best hits with BLAT, LAST, and UBLAST: how much do we miss?" PloS one 9(7): e101850. Wilson, A. C. and R. P. Duncan (2015). "Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses." Proc Natl Acad Sci U S A 112(33): 10255-10261. Yang, H., B. Beutler and D. Zhang (2022). "Emerging roles of spliceosome in cancer and immunity." Protein Cell 13(8): 559-579. Yang, J., L. H. Hung, T. Licht, S. Kostin, M. Looso, E. Khrameeva, A. Bindereif, A. Schneider and T. Braun (2014). "RBM24 is a major regulator of muscle-specific alternative splicing." Dev Cell 31(1): 87-99. Yeo, G. W., E. L. Van Nostrand and T. Y. Liang (2007). "Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements." PLoS Genet 3(5): e85. Yu, G., L. G. Wang, Y. Han and Q. Y. He (2012). "clusterProfiler: an R package for comparing biological themes among gene clusters." OMICS 16(5): 284-287. Yu, J., Z. Yang, M. Kibukawa, M. Paddock, D. A. Passey and G. K. Wong (2002). "Minimal introns are not "junk"." Genome Res 12(8): 1185-1189. Yuuki Kodama, H. S., Hideo Dohra, Manabu Sugii, Tatsuya Kitazume, Katsushi Yamaguchi, Shuji Shigenobu, Masahiro Fujishima (2014). "Comparison of gene expression of Paramecium bursaria with and without Chlorella variabilissymbionts." BMC Genomics(1): 183. Zhang, X., Z. Guo, Y. Li and Y. Xu (2025). "Splicing to orchestrate cell fate." Mol Ther Nucleic Acids 36(1): 102416. Zhu, J., F. He, D. Wang, K. Liu, D. Huang, J. Xiao, J. Wu, S. Hu and J. Yu (2010). "A novel role for minimal introns: routing mRNAs to the cytosol." PLoS One 5(4): e10144. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98369 | - |
| dc.description.abstract | 在內共生過程中,共生體整合進宿主細胞會顯著改變基因表現與細胞身分。雖然選擇性剪接已知可透過快速調節基因表現與蛋白質同功異構體的多樣性來促進細胞適應,但其在內共生期間扮演的調控角色仍所知甚少。Paramecium bursaria 是研究此現象的理想模式生物,因其細胞質中攜帶數百個 Chlorella variabilis 藻類共生體。此外,P. bursaria 及其相關的 Paramecium 物種具有極短的內含子(中位數約為 24 個核苷酸),因此為探討短內含子動態剪接、內共生期間的調控模式,以及纖毛蟲內含子演化提供了寶貴的系統。在本研究中,我們對含共生體(綠色)與無共生體(白色)的 P. bursaria 細胞進行時間進程RNA 定序,以分析內共生期間的內含子剪接模式。一般而言,5’端近端內含子的剪接,有助於提高基因表現量。我們發現綠色與白色的 P. bursaria細胞之間存在差異性剪接的內含子,且在跨膜轉運蛋白基因中有顯著富集,這些基因對於內共生期間宿主與藻類共生體間的養分交換至關重要。此外,我們鑑定出一系列剪接增強子與抑制子,位於保守的剪接體基因中,其表現量與內共生期間的差異性剪接內含子密切相關。透過跨纖毛蟲的內含子直系同源性分析,我們發現保留的內含子具有較高的剪接效率、較低的 GC 含量以及一致的內含子長度,顯示新演化出的內含子會經過剪接與表現上的優化。我們的研究結果提供了選擇性剪接在宿主於內共生過程中適應角色的新見解,並解釋了短內含子在真核基因體中的演化動態。 | zh_TW |
| dc.description.abstract | The integration of symbionts into host cells during endosymbiosis significantly alters gene expression and cell identity. While alternative splicing facilitates cellular adaptation through rapid modulation of gene expression and protein isoform diversity, its regulatory role during endosymbiosis remains poorly understood. Paramecium bursaria represents an ideal model for investigating this, as it harbors hundreds of Chlorella variabilis algae within its cytoplasm. Furthermore, P. bursaria and related Paramecium species possess exceptionally short introns (median ~24 nucleotides), providing a valuable system for examining short intron splicing dynamics, regulatory patterns during endosymbiosis, and ciliate intron evolution. In this study, we conducted time-course RNA sequencing on symbiont-bearing (green) and symbiont-free (white) P. bursaria cells to analyze intron splicing patterns during endosymbiosis. While in general, splicing, especially 5’ proximal introns, enhances gene expression, we identified differentially spliced introns between green and white, with an enrichment in transmembrane transporter genes, which are crucial for establishing nutrient transport between the host cell and its algal symbionts during endosymbiosis. Additionally, we identified splicing enhancers and repressors among conserved spliceosome genes, whose expression was closely linked to differentially spliced introns during endosymbiosis. Through intron orthology analysis across ciliates, we found that conserved introns are spliced more efficiently, with lower GC content and uniform length, suggesting that newly evolved introns undergo refinement to optimize splicing and expression. Our findings provide insight into the role of alternative splicing in host adaptation during endosymbiosis while shedding light on the evolutionary dynamics of short introns in eukaryotic genomes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:05:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-05T16:05:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Table of Contents vi Introduction 1 Materials and Methods 6 Paramecium bursaria strain and culture conditions 6 Genome annotation file and intron annotation 7 RNA extraction and RNA sequencing 7 Gene expression analysis 8 Alternative splicing event analysis, intron retention rate (PSI) calculation & differential spliced intron (DSI) clustering 8 GO terms enrichment analysis 9 Spliceosome comparison using reciprocal best BLAST hit and snRNA finding in P. bursaria 10 Linear regression analysis of the relationship between PSI and splicing-related gene expression in P. bursaria 11 Intron orthologs between ciliate species and intron ages assignment 11 Data availability 12 Results 12 Extremely short introns in P. bursaria exhibit enhancement effect on gene expression level 12 Conservation of the U2-dependent spliceosome in P. bursaria 14 Intron retention and alternative 3’ splice site are the most abundant alternative splicing events in P. bursaria 16 Intron retention rates are associated with GC content, intron length and gene expression levels 17 Two distinct intron splicing patterns between symbiotic and aposymbiotic cells and their association with the expression of splicing factors in symbiotic cells 19 Intron evolution in ciliate species reveals higher splicing efficiency and lower intron GC content in aged introns 22 Alternative splicing as a mode for gene regulation in endosymbiosis 25 Splicing factors specifically regulate DSIs between symbiotic and aposymbiotic cells 26 Intron evolution is associated with gene expression regulation 28 References 31 Figures 44 Tables 66 | - |
| dc.language.iso | en | - |
| dc.subject | 內共生 | zh_TW |
| dc.subject | Paramecium | zh_TW |
| dc.subject | 剪接體保守性 | zh_TW |
| dc.subject | 內含子進化 | zh_TW |
| dc.subject | 可變剪接 | zh_TW |
| dc.subject | Paramecium | en |
| dc.subject | endosymbiosis | en |
| dc.subject | spliceosome conservation | en |
| dc.subject | intron evolution | en |
| dc.subject | alternative splicing | en |
| dc.title | Paramecium bursaria 內含子:內共生期間的剪接調控與纖毛蟲物種中短內含子的演化 | zh_TW |
| dc.title | Paramecium bursaria introns: splicing regulation during endosymbiosis and short intron evolution in ciliate species | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 林倩伶 | zh_TW |
| dc.contributor.coadvisor | Chien-Ling Lin | en |
| dc.contributor.oralexamcommittee | 張典顯;蔡懷寬;駱乙君 | zh_TW |
| dc.contributor.oralexamcommittee | Tien-Hsien Chang;Huai-Kuang Tsai;Yi-Jyun Luo | en |
| dc.subject.keyword | Paramecium,內共生,可變剪接,內含子進化,剪接體保守性, | zh_TW |
| dc.subject.keyword | Paramecium,endosymbiosis,alternative splicing,intron evolution,spliceosome conservation, | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202502289 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 基因體與系統生物學學位學程 | - |
| dc.date.embargo-lift | 2025-08-06 | - |
| Appears in Collections: | 基因體與系統生物學學位學程 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf | 4.45 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
