Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98364Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 郭瑞祥 | zh_TW |
| dc.contributor.advisor | Ruey-Shan Guo | en |
| dc.contributor.author | 洪嘉濃 | zh_TW |
| dc.contributor.author | Chia-Nung Hung | en |
| dc.date.accessioned | 2025-08-05T16:04:25Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2025-08-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-21 | - |
| dc.identifier.citation | [1] E. K. Ampomah, Z. Qin, and G. Nyame. Evaluation of tree-based ensemble machine learning models in predicting stock price direction of movement. Information, 11(6):332, 2020.
[2] D. Araci. FinBERT: Financial sentiment analysis with pre-trained language models. arXiv:1908.10063, 2019. [3] G. S. Atsalakis and K. P. Valavanis. Surveying stock market forecasting techniques–Part II: Soft computing methods. Expert Systems with Applications, 36(3):5932–5941, 2009. [4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. Computing Research Repository, abs/1409.0473, 2014. [5] R. Batra and S. M. Daudpota. Integrating StockTwits with sentiment analysis for better prediction of stock price movement. 2018 International Conference on Computing, Mathematics and Engineering Technologies, pages 1–5, 2018. [6] BigScience, T. Le Scao, A. M. Rush, S. Biderman, A. Webson, S. Moore, et al. BLOOM: A 176b-parameter open-access multilingual language model. arXiv:2201.07245, 2022. [7] J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market. Journal of Computational Science, 2(1):1–8, 2011. [8] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth International Group, 1984. [9] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020. [10] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794. ACM, 2016. [11] S. Deng, X. Huang, Y. Zhu, Z. Su, Z. Fu, and T. Shimada. Stock index direction forecasting using an explainable eXtreme Gradient Boosting and investor sentiments. The North American Journal of Economics and Finance, 64:101848, 2023. [12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational Linguistics, 2019. [13] X. Ding, Y. Zhang, T. Liu, and J. Duan. Deep learning for event-driven stock prediction. In Proceedings of the 24th International Conference on Artificial Intelligence, page 2327–2333. AAAI Press, 2015. [14] Y. Dong, D. Yan, A. I. Almudaifer, S. Yan, Z. Jiang, and Y. Zhou. BELT: A pipeline for stock price prediction using news. In 2020 IEEE International Conference on Big Data, pages 1137–1146, 2020. [15] T. Fischer and C. Krauss. Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2):654–669, 2018. [16] W. Gu, Y. Zhong, S. Li, C. Wei, L. Dong, Z. Wang, and C. Yan. Predicting stock prices with FinBERT-LSTM: Integrating news sentiment analysis. In Proceedings of the 2024 8th International Conference on Cloud and Big Data Computing, pages 67–72. Association for Computing Machinery, 2024. [17] H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6):417–441, 1933. [18] N. Jing, Z. Wu, and H. Wang. A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction. Expert Systems with Applications, 178:115019, 2021. [19] J. Kim, H.-S. Kim, and S.-Y. Choi. Forecasting the S&P 500 index using mathematical-based sentiment analysis and deep learning models: A FinBERT transformer model and LSTM. Axioms, 12(9):835, 2023. [20] Q. Li, J. Tan, J. Wang, and H. Chen. A multimodal event-driven LSTM model for stock prediction using online news. IEEE Transactions on Knowledge and Data Engineering, 33(10):3323–3337, 2020. [21] J.-X. Liu, J.-S. Leu, and S. Holst. Stock price movement prediction based on Stocktwits investor sentiment using FinBERT and ensemble SVM. PeerJ Computer Science, 9:e1403, 2023. [22] W. Long, Z. Lu, and L. Cui. Deep learning-based feature engineering for stock price movement prediction. Knowledge-Based Systems, 164:163–173, 2019. [23] A. Lopez-Lira and Y. Tang. Can ChatGPT forecast stock price movements? return predictability and large language models. arXiv:2304.07619, 2023. [24] J. J. Ohana, S. Ohana, E. Benhamou, D. Saltiel, and B. Guez. Explainable AI (XAI) models applied to the multi-agent environment of financial markets. In Explainable and Transparent AI and Multi-Agent Systems, pages 189–207. Springer International Publishing, 2021. [25] OpenAI. ChatGPT: Optimizing language models for dialogue. https://openai.com/blog/chatgpt, 2022. [26] OpenAI. GPT-4 technical report. https://arxiv.org/pdf/2303.08774, 2023. [27] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with human feedback. In Proceedings of the 36th International Conference on Neural Information Processing Systems. Curran Associates Inc., 2022. [28] J. Patel, S. Shah, P. Thakkar, and K. Kotecha. Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications, 42(1):259–268, 2015. [29] K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(11):559–572, 1901. [30] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding by generative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf, 2018. [31] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Language models are unsupervised multitask learners. https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf, 2019. [32] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(1):1–67, 2020. [33] P. C. Tetlock. Giving content to investor sentiment: The role of media in the stock market. Journal of Finance, 62(3):1139–1168, 2007. [34] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, and E. Grave. LLaMA: Open and efficient foundation language models. arXiv:2302.13971, 2023. [35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. u. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. [36] Y. Xu and S. B. Cohen. Stock movement prediction from Tweets and historical prices. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1970–1979. Association for Computational Linguistics, 2018. [37] Q. Zhang, C. Qin, Y. Zhang, F. Bao, C. Zhang, and P. Liu. Transformer‑based attention network for stock movement prediction. Expert Systems with Applications, 202:117239, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98364 | - |
| dc.description.abstract | 股票市場作為資本流動與價值交換的核心平台,深受國內外經濟情勢與突發事件影響,股價變動日益劇烈。近年來,隨著資訊傳播速度大幅提升,傳統依賴技術指標與基本面數據的預測方法,常難以即時反映市場情緒與潛在風險訊號,對事件驅動型波動尤為敏感。為了捕捉非結構化新聞資料所蘊含的市場預期與投資人情緒,自然語言處理技術逐漸被導入股價預測領域。
另一方面,自 2022 年底 OpenAI 推出 ChatGPT 後,大型語言模型展現出的卓越語意理解與生成能力逐漸被世人重視,其不僅能夠執行情感判斷、實體辨識、摘要生成等任務,更能在缺乏大量標註資料的情況下,推論深層語意與市場情緒。LLM 的問世逐漸取代傳統的自然語言處理技術,並使金融語言資料的解析更加精準,為事件驅動交易與股價預測開啟嶄新可能。 本研究即旨在整合由 LLM 的情緒萃取技術以及機器學習的股票漲跌預測能力,以提升模型在精確率與召回率間的整體平衡表現。考量台灣股市以高科技產業為主、受全球政治與供應鏈事件高度影響,選擇台積電與其他具代表性的上市公司為研究對象,蒐集技術指標、股票新聞文本與 LLM 輸出之情感分析分數等時序性資料。本研究除了像以往論文直接使用語言模型取得情感分數外,亦嘗試設計一系列的新聞模組化處理方法。透過 GPT 模型執行新聞摘要與關鍵字抽取,進一步以詞嵌入及主成分分析壓縮語意向量,生成具代表性的市場情緒特徵。將多種特徵整合後,由後續機器學習模型進行訓練,並以集成方法整合各模型的預測結果,以提升結果的準確性與穩定性。 根據本研究的實驗結果發現,融合 LLM 所提供的語意特徵確實能提升股價漲跌的預測能力,尤其在半導體等高度關注的產業中,更展現出對市場變動的敏銳反應能力。此外,本研究所設計的新聞模組化處理流程,可以有效地在最後提供特徵解釋性,幫助我們釐清新聞文本中影響股價漲跌的可能因素。研究成果證實大型語言模型在金融語意分析上的應用潛力,為未來智慧投資與風險預警系統提供重要參考。 | zh_TW |
| dc.description.abstract | The stock market, as a core platform for capital flow and value exchange, is highly sensitive to both domestic and global economic conditions as well as unexpected events, resulting in increasingly volatile price fluctuations. In recent years, with the rapid acceleration of information dissemination, traditional forecasting methods based on technical indicators and fundamental data often struggle to reflect market sentiment and potential risk signals in a timely manner—especially in the context of event-driven volatility. To capture the market expectations and investor sentiment embedded in unstructured news data, natural language processing (NLP) techniques have gradually been introduced into the field of stock price prediction.
Since the release of ChatGPT by OpenAI in late 2022, large language models (LLMs) have demonstrated remarkable capabilities in semantic understanding and text generation. These models are capable not only of performing sentiment analysis, entity recognition, and summarization, but also of inferring deep semantics and market sentiment without the need for extensive labeled data. The emergence of LLMs is gradually replacing traditional NLP techniques and enabling more precise analysis of financial textual data, opening up new possibilities for event-driven trading and stock price forecasting. This study aims to integrate sentiment extraction powered by LLMs with machine learning-based stock movement prediction models to improve forecasting performance. Considering that Taiwan’s stock market is strongly influenced by high-tech industries and global geopolitical and supply chain events, this research focuses on TSMC and other representative listed companies. We collect time-series data including technical indicators, financial news texts, and sentiment scores output by LLMs. Unlike previous studies that directly use sentiment scores derived from language models, this study designs a series of modularized news processing steps. These include news summarization and keyword extraction via GPT models, followed by word embedding and principal component analysis (PCA) to compress semantic vectors and generate representative market sentiment features. These features are then integrated and used to train various machine learning models. An ensemble learning approach is employed to combine predictions and enhance both accuracy and robustness. Experimental results show that incorporating semantic features extracted by LLMs significantly improves the ability to predict stock price movements, particularly evident in highly followed industries such as semiconductors, where the model demonstrates a more sensitive response to market fluctuations. Moreover, the proposed modularized news processing pipeline provides feature interpretability, helping to identify the key elements in news articles that drive stock price changes. The findings confirm the potential of large language models in financial sentiment analysis and offer valuable insights for the development of intelligent investment strategies and risk alert systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:04:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-05T16:04:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書i
摘要ii Abstract iii 目次v 圖次viii 表次ix 第一章緒論1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第二章文獻回顧5 2.1 股價走勢預測之相關研究. . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 基於技術指標的股價預測研究. . . . . . . . . . . . . . . . . . . 5 2.1.2 基於情感分析的股價預測研究. . . . . . . . . . . . . . . . . . . 6 2.1.3 結合多元資料來源的股價預測研究. . . . . . . . . . . . . . . . 7 2.2 常見的股票價格預測模型. . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 機器學習模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 深度學習模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 大型語言模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 大型語言模型的發展. . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 大型語言模型在股票價格預測的應用. . . . . . . . . . . . . . . 16 第三章研究方法18 3.1 研究架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 技術指標. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 新聞情感分析方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 Transformer 架構與注意力機制. . . . . . . . . . . . . . . . . . . 22 3.3.2 GPT 模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.3 新聞模組化處理流程. . . . . . . . . . . . . . . . . . . . . . . . 29 3.4 非結構化特徵處理方法. . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.1 BERT 詞嵌入向量. . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.2 PCA 降維技術. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 機器學習分類模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5.1 邏輯回歸(Logistic Regression) . . . . . . . . . . . . . . . . . . . 35 3.5.2 支撐向量機(Support Vector Machines, SVM) . . . . . . . . . . . . 36 3.5.3 隨機森林(Random Forest) . . . . . . . . . . . . . . . . . . . . . . 36 3.5.4 梯度提升決策樹(Gradient Boosting Decision Trees, GBDT) . . . . 38 3.5.5 集成學習方法(Ensemble Learning) . . . . . . . . . . . . . . . 40 3.6 模型評估指標與方法. . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7 模型可解釋性方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 第四章實驗結果與討論43 4.1 實驗資料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 資料前處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1 數值資料的前處理過程. . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 新聞資料的前處理過程. . . . . . . . . . . . . . . . . . . . . . . 51 4.3 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.1 實驗參數設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.2 股票漲跌模型預測結果. . . . . . . . . . . . . . . . . . . . . . . 53 4.3.3 大型語言模型之新聞情感分析結果. . . . . . . . . . . . . . . . 55 4.3.4 大型語言模型之新聞關鍵摘要結果. . . . . . . . . . . . . . . . 60 4.4 SHAP 特徵重要性分析. . . . . . . . . . . . . . . . . . . . . . . . . 65 4.5 回測實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 第五章結論與未來展望76 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 參考文獻79 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 情感分析 | zh_TW |
| dc.subject | 大型語言模型 | zh_TW |
| dc.subject | 資料挖掘 | zh_TW |
| dc.subject | 股票漲跌預測 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | Machine Learning | en |
| dc.subject | Stock Movement Prediction | en |
| dc.subject | Data Mining | en |
| dc.subject | Sentiment Analysis | en |
| dc.subject | Large Language Model (LLM) | en |
| dc.title | 整合大型語言模型情感分析與機器學習之股票漲跌預測方法 | zh_TW |
| dc.title | A Stock Movement Prediction Approach Integrating Large Language Model Sentiment Analysis and Machine Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 藍俊宏;王子騫 | zh_TW |
| dc.contributor.oralexamcommittee | Jakey Blue;Tzu-Chien Wang | en |
| dc.subject.keyword | 大型語言模型,情感分析,機器學習,股票漲跌預測,資料挖掘, | zh_TW |
| dc.subject.keyword | Large Language Model (LLM),Sentiment Analysis,Machine Learning,Stock Movement Prediction,Data Mining, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202501996 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-22 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-06 | - |
| Appears in Collections: | 工業工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Access limited in NTU ip range | 7.03 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
