請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98360完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛宇甯 | zh_TW |
| dc.contributor.advisor | Louis Ge | en |
| dc.contributor.author | 王琮淯 | zh_TW |
| dc.contributor.author | Cong-Yu Wang | en |
| dc.date.accessioned | 2025-08-04T16:09:47Z | - |
| dc.date.available | 2025-08-05 | - |
| dc.date.copyright | 2025-08-04 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | [1] Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992-1001.
[2] Atrih, A., & Foster, S. (2001). Analysis of the role of bacterial endospore cortex structure in resistance properties and demonstration of its conservation amongst species. Journal of Applied Microbiology, 91(2), 364-372. [3] Bressuire-Isoard, C., Broussolle, V., & Carlin, F. (2018). Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms. FEMS Microbiology Reviews, 42(5), 614-626. [4] Cazemier, A. E., Wagenaars, S. F. M., & ter Steeg, P. F. (2001). Effect of sporulation and recovery medium on the heat resistance and amount of injury of spores from spoilage bacilli. Journal of Applied Microbiology, 90(5), 761-770. [5] Chen, J. L. (2020). “Enhance inactivation of MS-2 coliphage and Bacillus subtilis spore by UV-C LED/free chlorine process.” Master’s thesis, National Taiwan University, Taiwan. [6] Choi, S., Wang, K., Wen, Z., & Chu, J. (2017). Mortar crack repair using microbial induced calcite precipitation method. Cement & Concrete Composites, 83, 209-221. [7] DeJong, J., Fritzges, M., & Nüsslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1381-1392. [8] DeJong, J., Mortensen, B., Martinez, B., & Nelson, D. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210. [9] Dhami, N., Reddy, M., & Mukherjee, A. (2016). Significant indicators for biomineralisation in sand of varying grain sizes. Construction and Building Materials, 104, 198-207. [10] Donnellan, J. E., Levinson, H. S., & Nags, E. H. (1964). Chemically defined synthetic media for sporulation, germination, and growth of Bacillus subtilis. Journal of Bacteriology, 87(2), 332-336. [11] Douglas, S., & Beveridge, T. J. (1998). Mineral formation by bacteria in natural microbial communities. FEMS Microbiology Ecology, 26(2), 79-88. [12] Errington, J. (2003). Regulation of endospore formation in Bacillus subtilis. Nature Reviews Microbiology, 1(2), 117-126. [13] Ferris, F., Stehmeier, L., Kantzas, A., & Mourits, F. (1996). Bacteriogenic mineral plugging. Journal of Canadian Petroleum Technology, 35(8), 56-61. [14] Gomez, M. G., DeJong, J. T., Anderson, C. M., Nelson, D. C., & Graddy, C. M. (2016). Large-scale bio-cementation improvement of sands. In Geotechnical and Structural Engineering Congress 2016, 941–949. American Society of Civil Engineers. [15] Harkes, M., van Paassen, L., Booster, J., Whiffin, V., & van Loosdrecht, M. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112-117. [16] Higgins, D., & Dworkin, J. (2012). Recent progress in Bacillus subtilis sporulation. Fems Microbiology Reviews, 36(1), 131-148. [17] Ivanov, V., & Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Bio/Technology, 7, 139-153. [18] Ivanov, V., Stabnikov, V., Stabnikova, O., & Kawasaki, S. (2019). Environmental safety and biosafety in construction biotechnology. World Journal of Microbiology and Biotechnology, 35(2), Article 26. [19] Jonkers, H., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36(2), 230-235. [20] Karol, R. H. (2003). Chemical grouting and soil stabilization (Rev. & expanded ed.). CRC Press. [21] Kudo, T., & Horikoshi, K. (1979). The environmental factors affecting sporulation of an alkalophilic Bacillus species. Agricultural and Biological Chemistry, 43(12), 2613-2614. [22] Leggett, M. J., McDonnell, G., Denyer, S. P., Setlow, P., & Maillard, J. Y. (2012). Bacterial spore structures and their protective role in biocide resistance. Journal of Applied Microbiology, 113(3), 485-498. [23] Li, Y., Xu, Q., Li, Y., Li, Y., & Liu, C. (2022). Application of microbial-induced calcium carbonate precipitation in wave erosion protection of the sandy slope: An experimental Study. Sustainability, 14(20), Article 12965. [24] Lin, H., Suleiman, M., Brown, D., & Kavazanjian, E. (2016). Mechanical behavior of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), Article 04015066. [25] Lu, S., Na, K., Li, Y., Zhang, L., Fang, Y., & Guo, X. (2024). Bacillus-derived probiotics: Metabolites and mechanisms involved in bacteria-host interactions. Critical Reviews in Food Science and Nutrition, 64(6), 1701-1714. [26] Liu, D. Y. (2023). “Effect of MICP method on soil improvement by sandbox test.” Master’s thesis, National Taiwan University, Taiwan. [27] Martin, G., Yen, T., & Karimi, S. (1996). Application of biopolymer technology in silty soil matrices to form impervious barriers. In Proceedings of the 7th Australia New Zealand Conference on Geomechanics: Geomechanics in a Changing World, Adelaide, South Australia, July. [28] Martinez, B., DeJong, J., Ginn, T., Montoya, B., Barkouki, T., Hunt, C., Tanyu, B., & Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. ournal of Geotechnical and Geoenvironmental Engineering, 139(4), 587-598. [29] Mazas, M., Gonzalez, I., Lopez, M., Gonzalez, J., & Sarmiento, R. M. (1995). Effects of sporulation media and strain on thermal resistance of Bacillus cereus spores. International Journal of Food Science and Technology, 30(1), 71-78. [30] Minh, H., Durand, A., Loison, P., Perrier-Cornet, J., & Gervais, P. (2011). Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure. Applied Microbiology and Biotechnology, 90(4), 1409-1417. [31] Mitchell, J., & Santamarina, J. (2005). Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222-1233. [32] Montoya, B., Dejong, J., & Boulanger, R. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Geotechnique, 63(4), 302-312. [33] Mori, D., & Uday, K. (2021). A review on qualitative interaction among the parameters affecting ureolytic microbial-induced calcite precipitation. Environmental Earth Sciences, 80(8), Article 329. [34] Mortensen, B., Haber, M., DeJong, J., Caslake, L., & Nelson, D. (2011). Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of Applied Microbiology, 111(2), 338-349. [35] Mujah, D., Shahin, M. A., & Cheng, L. (2017). State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiology Journal, 34(6), 524-537. [36] Naveed, M., Duan, J., Uddin, S., Suleman, M., Hui, Y., & Li, H. (2020). Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil. Ecological Engineering, 153, Article 105885. [37] Ng, W.-S., Lee, M.-L., & Hii, S.-L. (2012). An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. Proceedings of the World Academy of Science, Engineering and Technology, Journal of Civil and Environmental Engineering, 6, 188–194. [38] Nicholson, W. (2002). Roles of Bacillus endospores in the environment. Cellular and Molecular Life Sciences, 59(3), 410-416. [39] Nicholson, W., Munakata, N., Horneck, G., Melosh, H., & Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64(3), 548-572. [40] Paredes-Sabja, D., Setlow, P., & Sarker, M. R. (2011). Germination of spores of Bacillales and Clostridiales species: Mechanisms and proteins involved. Trends in Microbiology, 19(2), 85-94. [41] Rahman, M., Hora, R., Ahenkorah, I., Beecham, S., Karim, M., & Iqbal, A. (2020). State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications. Sustainability, 12(15), Article 6281. [42] Riley, E., Schwarz, C., Derman, A., & Lopez-Garrido, J. (2021). Milestones in Bacillus subtilis sporulation research. Microbial Cell, 8(1), 1-16. [43] Rowshanbakht, K., Khamehchiyan, M., Sajedi, R., & Nikudel, M. (2016). Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological Engineering, 89, 49-55. [44] Schaeffer, P., Millet, J., & Aubert, J. (1965). Catabolic repression of bacterial sporulation. Proceedings of the National Academy of Sciences of the United States of America, 54(3), 704–708. [45] Setlow, P. (2014). Germination of spores of Bacillus species: What we know and do not know. Journal of Bacteriology, 196(7), 1297-1305. [46] Sharma, T., Alazhari, M., Heath, A., Paine, K., & Cooper, R. (2017). Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation. Journal of Applied Microbiology, 122, 1233-1244. [47] Sun, X., Miao, L., Wu, L., & Wang, H. (2021). Theoretical quantification for cracks repair based on microbially induced carbonate precipitation (MICP) method. Cement and Concrete Composites, 118, Article 103950. [48] Tan, I. S., & Ramamurthi, K. S. (2014). Spore formation in Bacillus subtilis. Environmental Microbiology Reports, 6(3), 212-225. [49] Tang, C., Yin, L., Jiang, N., Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: A review. Environmental Earth Sciences, 79(5), Article 94. [50] Van Paassen, L., Ghose, R., van der Linden, T., van der Star, W., & van Loosdrecht, M. (2010). Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136(12), 1721–1728. [51] Van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., & van Loosdrecht, M. C. M. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2), 168-175. [52] Van Wijngaarden, W., A mathematical model and analytical solution for the fixation of bacteria in biogrout. Transport in Porous Media, 92(3), 847–866. [53] Verma, N., Singh, N. A., Kumar, N., & Raghu, H. (2013). Screening of different media for sporulation of Bacillus megaterium. International Journal of Microbiology Research and Review, 1, 68-73. [54] Vijay, K., Murmu, M., & Deo, S. (2017). Bacteria based self healing concrete: A review. Construction and Building Materials, 152, 1008-1014. [55] Wang, X., & Llopis, P. (2016). Visualizing Bacillus subtilis during vegetative growth and spore formation. Chromosome architecture: Methods and protocols (Vol. 1431, pp. 275–287). Springer. [56] Whiffin, V., van Paassen, L., & Harkes, M. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423. [57] Xiao, Y., Chen, H., Stuedlein, A., Evans, T., Chu, J., Cheng, L., Jiang, N., Lin, H., Liu, H., & Aboel-Naga, H. (2020). Restraint of particle breakage by biotreatment method. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), Article 04020123. [58] Zamani, A., Montoya, B., & Gabr, M. (2019). Investigating challenges of in situ delivery of microbial-induced calcium carbonate precipitation (MICP) in fine-grain sands and silty sand. Canadian Geotechnical Journal, 56(12), 1889-1900. [59] Zhang, X., Chen, Y., Liu, H., Zhang, Z., & Ding, X. (2020). Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests. Soil Dynamics and Earthquake Engineering, 129, Article 105959. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98360 | - |
| dc.description.abstract | 微生物誘導碳酸鈣沉澱 (Microbially Induced Carbonate Precipitation, MICP) 為一種具環境友善與可持續性的地盤改良技術,其透過尿素酶細菌分解尿素產生碳酸鈣以膠結土壤。然而,現行 MICP 工法多以營養細胞型菌液為主,受限於其對環境條件高度敏感,在保存、運輸與反應控制上皆面臨挑戰,並易造成沉澱集中與改良不均等問題。為突破此瓶頸,本研究提出以 Sporosarcina pasteurii 孢子替代營養細胞作為改良菌體來源,並進行一系列涵蓋孢子形成、乾燥保存、萌發特性與應用效果之系統性實驗,評估孢子型菌液於 MICP 工法中之可行性與工程潛力。
本研究首先針對五種誘導培養基進行篩選,並以不同培養天數與加熱條件處理後之平板計數及顯微鏡影像評估孢子形成率。結果顯示,以 NB_ion 培養基培養五天最具孢子形成之表現,且經 50°C 加熱 15 分鐘可有效抑制營養細胞,以製備純孢子型菌液。於乾燥處理部分,經比較四種不同處理方式,選定冷凍預處理後冷凍乾燥法為最適方法,其能成功將孢子保存為粉末型態,且復水後仍保有良好萌發能力。應用層面以小型土壤試體進行改良實驗,分別針對營養細胞與孢子型菌液設計不同養護天數組別,評估其碳酸鈣沉澱量與深度分佈變異。結果顯示,養護七日後孢子組之碳酸鈣總量與營養細胞組相近,且沿深度之含量變異性較小,變異係數 (Coefficient of Variation) 明顯較低,顯示孢子型菌液具延遲活化特性,有助於提升沉澱均勻性與改良品質穩定性。 整體而言,孢子型菌液具備高保存性、反應時程延長與空間分布均勻之優勢,為 MICP 工法提供具實務可行性與應用潛力之替代菌體形式。本研究成果有助於突破 MICP 技術現有瓶頸,推動其於地盤改良工程中之應用深化與規模化發展。 | zh_TW |
| dc.description.abstract | Microbially Induced Carbonate Precipitation (MICP) is a ground improvement technique considered to have potential environmental friendliness and sustainability. It utilizes urease-producing bacteria to hydrolyze urea, resulting in calcium carbonate precipitation that binds soil particles. However, current MICP applications predominantly rely on vegetative bacterial cells, which are highly sensitive to environmental conditions and face challenges in preservation, transportation, and reaction control. These limitations often lead to concentrated precipitation near injection points and non-uniform soil improvement. To address these issues, this study proposes using Sporosarcina pasteurii spores as an alternative bacterial form, and conducts a series of systematic experiments covering spore formation, drying preservation, germination capacity, and application performance to evaluate the feasibility and engineering potential of spore-based MICP treatment.
The study first screened five types of spore-inducing media, and evaluated spore formation efficiency by subjecting cultures to varying incubation durations and heat treatment conditions, followed by plate counting and microscopic observation. Results indicated that cultivation in NB_ion medium for five days followed by heat treatment at 50°C for 15 minutes effectively suppressed vegetative cells and produced a stable, spore-only bacterial suspension. For drying preservation, four methods were compared, and freeze-drying after pre-freezing was selected as the optimal approach. It successfully preserved spores in powder form while maintaining high germination capacity upon rehydration. In the application phase, small-scale sand specimens were treated with both vegetative and spore-based bacterial solutions under different curing durations. The total calcium carbonate content and its depth-wise distribution were analyzed. After seven days of curing, the spore-treated group achieved a comparable calcium carbonate yield to the vegetative group, while exhibiting lower variation along depth, as evidenced by a lower coefficient of variation (CV). These findings highlight the delayed activation characteristics of spores, which contribute to more uniform precipitation and improved treatment quality. Overall, spore-based bacterial solutions offer high storability, extended reaction control, and better spatial distribution of precipitation, making them a viable and promising alternative for MICP applications. The results of this study help address current limitations in bacterial preservation and uniformity control, advancing the practical development and scalability of MICP-based ground improvement. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-04T16:09:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-04T16:09:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 iii Abstract iv 目次 vi 圖次 ix 表次 xii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 文獻回顧 5 2.1 MICP技術概述 5 2.2 MICP在大地工程中的應用與挑戰 8 2.3 細菌孢子特性及在MICP中的潛力 13 2.3.1 孢子形成調控及發育歷程 14 2.3.2 細菌孢子的結構與環境耐受性 17 2.3.3 細菌孢子萌發機制 19 2.4 本章小結 21 第三章 研究方法 23 3.1 研究架構 23 3.2 試驗材料與製備 25 3.2.1 菌株及保存 25 3.2.2 凍菌製備 25 3.2.3 試劑與培養基 27 3.2.4 試驗用砂 31 3.3 生理與生長特性測定 33 3.3.1 光密度 (OD600) 測量 33 3.3.2 總生菌數 (Total Viable Count, TVC) 34 3.3.3 酸鹼值 (pH) 測量 35 3.3.4 顯微鏡觀察及染色法 35 3.4 菌體特性試驗 37 3.4.1 生長曲線試驗 37 3.4.2 營養細胞死亡條件試驗 37 3.5 孢子誘導條件篩選與形成率分析 39 3.5.1 孢子培養基篩選 39 3.5.2 孢子形成率試驗 41 3.6 孢子粉末化與萌發試驗 43 3.6.1 孢子菌液之乾燥處理方式 43 3.6.2 孢子粉末之保存與復水方式 44 3.6.3 萌發率測試方法 45 3.7 小型土壤模型改良試驗 46 3.7.1 圓柱試體準備與流程 46 3.7.2 菌液配置與施用方式 48 3.7.3 碳酸鈣含量與含水量分析 51 第四章 結果與討論 57 4.1 Sporosarcina pasteurii生長曲線分析 57 4.2 營養細胞致死條件結果 59 4.2.1 加熱處理後再接種之OD600結果 59 4.2.2 平板計數存活率分析 63 4.3 孢子培養基篩選結果 65 4.4 孢子形成率試驗 71 4.4.1 各條件下加熱後重新接種之OD600結果 71 4.4.2 顯微鏡觀察之孢子形成率 75 4.4.3 平板計數之孢子形成率 77 4.4.4 不同方法估算孢子形成率之比較與討論 79 4.5 孢子乾燥與萌發試驗 82 4.5.1 各乾燥方法之樣品觀察結果 82 4.5.2 復水後之萌發能力評估 (OD₆₀₀) 84 4.5.3 平板計數之萌發率分析與比較 85 4.6 小型土壤改良試體結果 87 4.6.1 各組試體之含水量與碳酸鈣含量結果 87 4.6.2 改良效果分析與均勻性比較 93 第五章 結論與建議 97 5.1 結論 97 5.2 建議 98 參考文獻 99 附錄A 孢子形成率試驗之原始數據 A-1 附錄B 孢子粉末萌發試驗之原始數據 B-1 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 微生物誘導碳酸鈣沉澱 | zh_TW |
| dc.subject | Sporosarcina pasteurii | zh_TW |
| dc.subject | 孢子 | zh_TW |
| dc.subject | 土壤改良 | zh_TW |
| dc.subject | 菌體保存 | zh_TW |
| dc.subject | 孢子乾燥 | zh_TW |
| dc.subject | 沉澱均勻性 | zh_TW |
| dc.subject | Sporosarcina Pasteurii | en |
| dc.subject | Precipitation Uniformity | en |
| dc.subject | Spore Drying | en |
| dc.subject | Bacterial Preservation | en |
| dc.subject | Ground Improvement | en |
| dc.subject | Spores | en |
| dc.subject | Microbially Induced Carbonate Precipitation | en |
| dc.title | 孢子化技術於MICP處理之可行性探討 | zh_TW |
| dc.title | Feasibility of Sporulation Technique for MICP Treatment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 童心欣;卓雨璇 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Hsin Tung;Yu-Syuan Jhuo | en |
| dc.subject.keyword | 微生物誘導碳酸鈣沉澱,Sporosarcina pasteurii,孢子,土壤改良,菌體保存,孢子乾燥,沉澱均勻性, | zh_TW |
| dc.subject.keyword | Microbially Induced Carbonate Precipitation,Sporosarcina Pasteurii,Spores,Ground Improvement,Bacterial Preservation,Spore Drying,Precipitation Uniformity, | en |
| dc.relation.page | 111 | - |
| dc.identifier.doi | 10.6342/NTU202502099 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 9.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
